
DOCUMENT RESUME

ED 352 991 IR 054 343

AUTHOR Kriz, Harry M.
TITLE A Public-Use, Full-Screen Interface for SPIRES

Datawases.
PUB. DATE Oct 92
NOTE 57p.; This paper was prepared for distribution at the

SPIRES Fall Workshop (Chapel Hill, NC, October 12-14,
1992).

PUB TYPE Guides Non-Classroom Use (055) Computer Programs
(101) Speeches/Conference Papers (150)

EDRS PRICE MF01/PC03 Plus Postage.
DESCRIPTORS Access to Information; College Libraries; *Computer

System Design; *Database Management Systems;
Databases; *Gateway Systems; Higher Education;
Information Retrieval; Online Catalogs; *Online
Searching

IDENTIFIERS Newspaper Index (Database); Virginia Polytechnic Inst
and State Univ

ABSTRACT
This paper describes the techniques for implementing

a full-screen, custom SPIRES interface for a public-use library
database. The database-independent protocol that controls the system
is described in detail. Source code for an entire working application
using this interface is included. The protocol, with less than 170
lines of procedural code, can be used virtually without modification
with any SPIRES subfile for which appropriate full-screen formats
have been designed. The interface enables end users with no knowledge
of SPIRES, and with no training on the system, to conduct complex
Boolean searching across data fields. The user does not need to issue
any commands. Rather, all necessary actions are initiated by pressing
a function key after entering keywords on a full-screen search form.
A help system presents necessary explanations and enables easy
browsing of indexed keywords and authority terms. The system is
illustrated with examples from Newspaper-Index, a public use database
now in use in the libraries at Virginia Polytechnic Institute and
State University. The appendices to this paper contain the complete
source code for the Newspaper Index application as it was working in
the Virginia Tech Libraries on 9/24/92 using SPIRES version 89.03
under IBM's CMS operating system. (Author/KRN)

Reproductions supplied by EDRS are the best that can be made
from the original document.

U.S DEPARTMENT OF EDUCATION
()thee OI Educahonal Research and irnoroverneol

EDUCATIONAL RESOURCES INFORMATION
CENTER IERICI

C Thus document has been reproduced as
rece Irom the person or OrganqatrOn
or nahno 0

.nor changes hare been made to improve
rebrOducIton Quality

Points of wewOr0OrmOns staled rn lnrsdocu
.1 d0 not necessary teoresent orfic.ai

OERI pOSohon or ooliCY

A Public-Use, Full-Screen Interface
for SPIRES Databases

Harry M. Kriz
Automation Librarian

University Libraries
Virginia Polytechnic Institute and State University

Blacksburg, VA 24061
September 25, 1992

Prepared for distribution at the SPIRES Fall Workshop
University of North Carolina at Chapel Hill

October 12-14, 1992

2

BEST COPY Or TE

"PERMISSION TO REPRODUCE THIS
MATERIAL HAS BEEN GRANTED BY

Harry ii. Kriz

TO THE EDUCATIONAL RESOURCES

INFORMATION CENTER (ERIC1."

CC...we are never looking for the best program, seldom looking for a good
one, but always looking for one that meets the requirements."

Gerald M. Weinberg
Tice Psychology of Computer Programming
Van Nostrand Reinhold, N. Y., 1971, p. 17

TABLE OF CONTENTS

Table of Contents iii

Abstract

Introduction 1

Newspaper Index--A Sample System 3

Sample Session 3

Features and Limitations 9

Components Of A Full-Screen Interface 11

PUBLIC: A Database-Independent Protocol 15

MAIN 15

INITIALIZE SESSION 16

RSLT 16

RSLT.SCRN 17

RSLT.STOR.KEYS 17

SRCH 17

SRCH.DOFIND 18

SRCH.GETARG 18

SRCH.SCRN 19

WELCOME 19

Formats 21

Adapting This System 25

Appendix 1. PUBLIC protocol 27

Appendix 2. PUBLIC vgroup 33

Appendix 3. PUBLIC format 35

Appendix 4. HELP protocol 39

Appendix 5. HELP vgroup 41

Appendix 6. HELP format 43

Appendix 7. NEWSPAPER INDEX file definer 47

Appendix 8. NEWSPAPER INDEX file definition 51

Appendix 9. dELP file definer 57

Appendix 10. HELP file definition 59

Appendix 11. PRINT protocol 61

Appendix 12. ERRORS protocol 63

ABSTRACT

This paper describes the techniques for implementing a full-screen, custom SPIRES
interface for a public-use library database. The database-independent protocol that
controls the system is described in detail. Source code for an entire working
application using this interface is included. The protocol, with less than 170 lines of
procedural code, can be used virtually without modification with any SPIRES subfile
for which appropriate full-screen formats have been designed. The interface enables
end users with no knowledge of SPIRES, and with no training on the system, to
conduct complex Boolean searching across data fields. The user does not need to
issue any commands. Rather, all necessary actions are initiated by pressing a
function key after entering keywords on a full-screen search form. A help system
presents necessary explanations and enables easy browsing of indexed keywords
and authority terms. The system is illustrated with examples from NEWSPAPER
INDEX, a public-use database now in use in the libraries at Virginia Polytechnic
Institute and State University.

INTRODUCTION

During the past several years, a number of SPIRES databases were implemented in
the libraries at Virginia Polytechnic Institute & State University (Virginia Tech).
Most of these were devised by public services librarians to manage information
about, and provi(nhanced access to, specialized areas of the collection. As these
databases grew in oize and scope, it became apparent that making the systems
available for direct use by the public was desirable.

Direct public use would relieve librarians.from an increasingly heavy load of custom
searches requested by library users. Users would be able to get results quickly at
their own convenience. Such public, end user access would extend the reach of the
databases to a broader range of individuals both on campus and throughout the
state of Virginia.
In making the databases available to the public, it was recognized that only a
handful of students, faculty, and librarians at Virginia Tech have any knowledge of
SPIRES. To avoid the need for implementing a major training program, it was
necessary that the public user interface not require any knowledge of SPIRES
commands. The naive user should be able to access the system and begin searching
immediately. This implied the user should be able to fill out an on-screen form
describing the desired result. Function keys should provide all user functions,
including conducting the search, viewing the results, printing the results, and
asking for help. SPIRES contains all the tools necessary to create such a system
with a minimum amount of programming. Borrowing a term popular in the
microcomputer world, it can be said that creation of such an interface is within the
reach of the SPIRES "power user."

Creating a full-screen SPIRES interface for the first time can be confusing.
Knowledge of several parts of SPIRES is necessary, and real testing cannot begin
until all the parts work together well enough so that some user input can be read
from the screen and some output data can be placed on the screen. The document
SPIRES Device Services (May 12, 1989, CMS edition) devotes a chapter to
implementing a full-screen interface. As with all SPIRES documentation, this
manual is clear, concise, and accessible to the SPIRES "power user." Additional
documentation is distributed through the manuals SPIRES Protocols and SPIRES
Formats. Fortunately, the bulk of the code needed to create the interface is
descriptive, and not procedural. It is this feature of SPIRES that makes it so usable
by non-programmers.
Considering the distributed nature of the documentation, it was felt that a more
complete description of a working library database in use by the public would be
helpful to those attempting to write their first full-screen application. This document
presents such a description, including complete source code for Virginia Tech's
NEWSPAPER INDEX'. Included here is a full-screen protocol that can be used almost
without modification to construct a full-screen interface for any SPIRES subfile. The
protocol contains less than 170 lines of procedural code, which is almost all the
procedural code necessary to implement a basic full-screen interface. Unlike the

1

SPIRES Full-Screen Interface

sample protocol in the 1989 documentation, the protocol presented here takes
advantage of the structured programming facilities that have been added to the
SPIRES protocol language in recent years. By using function keys to initiate all
actions, it also eliminates the need for the user to type any commands. Those
attempting to write their own interface can use this protocol as printed simply by
observing certain naming conventions when designing screen formats.

It is not necessary that the reader be experienced with SPIRES formats and
protocols to follow this discussion. Concepts will be described in general terms so as
to lead the reader to focus on the most relevant sections of the SPIRES
documentation. Readers who are comfortable creating custom applications with
microcomputer database software may be surprised at the straightforward means by
which a user interface can be implemented on a mainframe using SPIRES. Such
microcomputer power users can easily become power users of SPIRES thanks to the
capabilities of the non-procedural, descriptive SPIRES languages.

The discussion that follows is based on the documentation for the 1989 release of the
CMS version of SPIRES. The source code in the appendices is that which was in use
by NEWSPAPER INDEX in the Virginia Tech Libraries on 9/24/92.

2
6

NEWSPAPER INDEX - -A SAMPLE SYSTEM

The methods for creating a full-screen interface for a SPIRES database will be
illustrated by reference to the Virginia Tech Library's NEWSPAPER INDEX. This
application was chosen from among several in existence at Virginia Tech because
the simplicity of the database structure allows the reader to focus on the details of
the interface.

NEWSPAPER INDEX is produced by reference librarians who scan two area
newspapers plus two campus newspapers for articles of interest to the Virginia Tech
community. The area newspapers of interest are the Christiansburg News Messenger
(the county newspaper) and the Roanoke Times & World News (published in nearby
Roanoke, a city with a population of about 100,000). Campus newspapers indexed in
the system are the Collegiate Times (the student paper) and the Virginia Tech
Spectrum (the weekly newspaper for faculty and staff). Articles relating to Virginia
Tech and the southwest Virginia locale are included. The database was implemented
originally on index cards, transferred to a microcomputer in the mid-1980's, and
converted to SPIRES during Summer, 1991. At that time, some 30,000 articles had
been indexed. The system has grown since to contain information about nearly
45,000 newspaper articles.

SAMPLE SESSION
NEWSPAPER INDEX can most easily be understood by examining the following
sequence of screens showing an illustrative (but certainly atypical) online session. In
this sample session, the user is searching NEWSPAPER INDEX for newspaper articles
about the popular topic of beer and alcohol in relation to students. After logging on,
the user enters SPIRES and selects the subfile NEWSPAPER INDEX. At Virginia Tech
this can be done by selecting NEWSPAPER INDEX from a menu on the mainframe
INFO system so the user never needs to know anything about the SPIRES system.
The figure captions trace the user's steps, and they indicate what components of the
system are executing when each screen is displayed.

3

SPIRES Full-Screen Interface

Fig 1. Upon selecting, Newspaper Index, the user sees this identifying screen. (Frame

LOGO in format MSG.)

Welcome to

#########
##
##
########
##
##
#########

######### ### ## ######## ######## ## ##
##
0#
###
##
##

######### ## ### ######## ######## ## ##

An index to 46758 news articles about
Southwest Virginia, the New River Valley, and Virginia

Press <ENTER> to continue

Tech.

Fig 2. A brief explanatory message describes the database and provides some initial
guidance in its use (Frame GREETING in format MSG.)

Good Afternoon Userid ERIE

Welcome to NEWSPAPER INDEX, a database of news articles about

Southwest Virginia, the New River Valley, and Virginia Tech.

You do not need to learn any commands to use this database.

Begin your search by entering keywords on the search screen
which follows. Then press PF2 to execute the search and view

the results. Read the online help to get hints about effective

searching techniques.

You may exit from NEWSPAPER INDEX by pressing PF10 on the next screen.

:(Press <ENTER> to continue)

4

VH READ VTVH1

Grili AVAILABLE

Newspaper Index--A Sample System

Fig 3. A blank search screen is presented to the user, making it obvious that keywords
and dates may be entered for searching. The adventurous new user enters a compound
search request (shown in italics) using Boolean operators. The user presses PF2 to
conduct the search. (Blank data entry screen created by frame SRCHFORMDISP in
format PUBLIC, data entered by user read from screen by frame SRCHFORMGET.)

NEWSPAPER SEARCH
Enter keywords, limit dates, then press PF2

PF1=Selp PF2=Do search PF3=Erase words PF4=Show again PF/0=Exit

Enter subject and title keywords on the lines below:
==> (beer or alcohol) student
:.>

EXCLUDE articles published before (mm/dd/yy):

EXCLUDE articles published after (mm/dd/yy):

Fig 4. The syntax entered by the inexperienced user is not understood by the system,
which displays an informative message. (Output typed to screen by ERRORS protocol.)

*
* Your keyword syntax is interpreted as

KW (beer or alcohol) student

* which is a form NOT understood by the system.
* Please edit your keywords and try again.
*

* When you press the CLEAR key, you will be returned
* to the search screen and you will see the message
*

'No articles found...'
*

* You may continue searching after modifying your request.

MORE... VTVM2

BEST COPY VtILABLE
5

SPIRES Full-Screen Interface

Fig 5. On returning to the search screen, the user presses PF1 to get help and sees this
menu. He enters the number 90 to indicate he wants a list of keywords. He enters the
string alcoho as a stem for keywords. (Menu displayed by frame HELP.S.MENU in
format HELP, user entry read by frame HELP.GET in format HELP.)

HELP FOR SEARCHING
Enter the number of the desired topic, press PF2

PF2=View selection

Enter number of topic 90

1) General information

2) Function keys

3) Keywords

PF3=Quit HELP

7) Boolean operators

8) Compound search expression

9) Natural language searching

4) Dates 10) Wild card searching

7) Personal names 11) Costs

6) Newspapers 12) Technical details

13) Special services

90) List keywords beginning with: alcoho

Fig 6. A list of keywords is shown to the user, indicating there are several terms of
interest beginning with the string alcoho. (Displayed by the BROWSE index command

issued from the HELP protocol.)

ALCATEL
ALCC
ALCHOLIC
ALCO
ALCOA
ALCOHOL
ALCOHOLIC
ALCOHOLICS
ALCOHOLISM
ALCOHOLS
-More?

y
ALCORN
ALCOTTS
ALDEN
ALDER
ALDERMAN
ALDERSON
AIDICARB
ALDRIDGE
ALE
ALEX=

MORE... VTVM1

6

Newspaper index - -A Sample System

Fig 7. The user also looks up help for wildcard searching. (Displayed by frame
SHOWHELP in format HELP.)

WILDCARD SEARCHING

When searching a natural language index, you must consider the possible
variations in which a word may appear. Words may be singular, plural,

and possessive. A word of interest may also serve as the stem of
several other words which are of interest.

For example, when searching for articles on student abuse of alcohol,
you might search for each of the keywords ALCOHOL, ALCOHOLIC,
ALCOHOLICS, ALCOHOLISM, and possessive forms such as ALCOHOLIC'S. You
could enter each of these words sepa7ated by an OR operator to create a
single search expression that would retrieve all references as part of
a single search result. (See Boolean Operators).

The same result can be obtained more easily by entering the keyword
ALCOHOL*, where the * is a 'wild card' which stands for any string of
characters following the word stem ALCOHOL.

When using the wild card character, make the word stem at least 5
characters long. The system requires at least 5 characters so as to
reduce the number of irrelevant articles. To take an extreme example,
it would serve little purpose to search on the keyword A* because that

MORE... v7vIl1

Fig 8. The user enters a properly formatted compound search request (shown in italics)
and presses PF2 to conduct a search. (Blank data entry screen created by frame
SRCHFORMDISP in format PUBLIC, data entered by user read from screen by frame
SRCHFORMGET.)

NEWSPAPER SEARCH
Enter keywords, limit dates, then press PF2
No articles found for EH (beer or alcohol) student
PF1=Help PF2=Do search PPG-Erase words PF4=Show again PF10...Exit

Enter subject and title keywords on the lines below:
==> student* and (beer or alcohol*)

EXCLUDE articles published before (mm/dd/yy):

ExcLurz articles published after (mm/dd/yy):

7

SPIRES Full-Screen Interface

Fig 9. The user displays one of the records in his search result. (Displayed by frame
SRCHRESULT in format PUBLIC.)

ARTICLES
FIND: KW student* and (beer or alcohol*)
Record 10 of 18
PF1=Help PF3=Quit viewing PF7=Previous article PF8=Next article PF9=Print

Source: Roanoke Times Date: 09/13/87 Page: NRV 1
Title: Researchers ready to party: Student's return means it's time to study

drinking
Subjects: ALCOHOL. GELLER. PSYCHOLOGY. RUSS. SERVER. TESTING. TIPS.

TRAINING FOR INTERVENTION PROCEDURES BY SERVERS OF ALCOHOL.
VIRGINIA TECH.

Fig 10. Upon pressing PF9, the user has the opportunity to print the results of the

search.

*
* There are 18 titles to be printed
* for the search
*

KW student* and (beer or alcohol*)
*

Printout will be generated on the 3800 printer
in the Computing Center.

:Do you wish to print the list of articles (Y/N)?

VH READ VTV142

8

p

Newspaper Index--A Sample System

FEATURES AND LIMITATIONS
Features of this full-screen interface include the following:

User needs no knowledge of SPIRES.
User needs no training because commands are function-key driven
and selected from a menu.
A menu-driven help system can be invoked by pressing PF1.
While entering a new search, the results of the most recent
successful search can be redisplayed starting at the record last
viewei. This allows referral to an existing result while entering a
new set of keywords for a subsequent search.
Results of the most recent successful search can be viewed even
following execution of a search that does not retrieve any records.
Display of records wraps around so that the first record in a result
is displayed after the last record, and the last record is displayed
before the first record.
User entries on search screens and help screens are remembered
by the system so the user can revise a search simply by editing the
existing keywords without having to retype an entire request.
The number of records allowed for display in a result is controlled
by the designer.
An error system provides clearly worded explanations and
instructions, isolating the user from cryptic system messages.

There are two limitations to this full-screen interface:

Only one record is displayed on the result screen.
All data elements to be displayed must fit on one screen.

9

COMPONENTS OF A FULL-SCREEN
INTERFACE

The sample session with NEWSPAPER INDEX indicates that a full-screen interface is
conceptually simple. First, there is a search screen on which the user enters
keywords and other parameters, such as dates, which define the desired
information. The user does not need to know anything about the structure of the
data elements and indexes, nor does he need any knowledge of SPIRES commands.
In NEWSPAPER INDEX, the search screen reveals to the user that a search can be
made for articles described by keywords, that the search can be limited by the date
an article was published, and that certain actions will occur when a function key is
pressed. Second, there is a result screen that displays records from the database
that satisfy the search criteria.

A complete system adds screen displays which welcome the user when the subfile is
first selected and, and which provide clear explanations and instructions when
SPIRES cannot execute the request entered by the user. A help system can guide
the user in formulating a search request so as to take advantage of the capabilities
built into the SPIRES subfile, such as wild card searching. It also can provide
information about the contents of the database, including dates of coverage and the
treatment of personal names.
Implementing this conceptually simple system requires knowledge of several
SPIRES subsystems. The heart of the application is a program named PUBLIC
written in the SPIRES PROTOCOL language. The PUBLIC protocol as used in
NEWSPAPER INDEX uses less than 170 lines of procedural code to implement
searching and display of records. Once the basic system for search and display is
working, three additional protocols can be added as modules to implement the help
and printing functions, and to display custom error messages.

Much of the code in the protocols consists of SPIRES commands that a user could
issue from the keyboard. The PUBLIC protocol issues commands that use SPIRES
formats to format the screen displays, and to read the keywords entered by the user
on the search screen. A SPIRES format consists mostly of non-procedural code that
describes the content and location of data to be written to or read from a physical
device such as a computer screen. Both the protocol and the format use variables to
exchange information between themselves and the SPIRES system. Variables are
defined in SPIRES vgroups. Learning how protocols, formats and vgroups work
together is the major hurdle to be overcome in writing one's first full-screen
interface.
The complete NEWSPAPER INDEX application consists of the components described
below. Note in the description of these components that a basic full-screen system
can be implemented using only the protocol, format, and vgroup named PUBLIC.
Additional features for a complete interface, such as a help system and printing
functions, can be added in a modular fashion after the basic system is working.
Source code for all components of NEWSPAPER INDEX is included in the appendices.

14
11

SPIRES Full-Screen Interface

FILES:
NEWSPAPERINDEX is the SPIRES file for the database of
newspaper articles. It consists of two subfiles. The subfile
NEWSPAPER INDEX is the database of articles. The subfile
NEWSPAPER SUBJECTS is an authority file of subject headings that
are used to provide enhanced subject access to the article
database. A single keyword index includes words from the article
headlines and from the subject headings assigned by the indexers.

NPPROTOS is the SPIRES file containing protocols used by
NEWSPAPER INDEX. It consists of one subfile named NEWSPAPER
PROTOCOLS. All protocols used by the system are executed from
this file. A protocol subfile can be generated automatically by
SPIRES through the command PERFORM BUILD PROTOCOLS.

NPHELP is the SPIRES file containing text of help messages. It
consists of the single subfile NEWSPAPER HELP. If a help system is
not required, then this file is not needed.

PROTOCOLS:
PUBLIC is the main protocol controlling the interaction of the user
with the full-screen interface. This protocol executes the HELP
and PRINT protocols if those functions are included in the system.
PUBLIC is executed by a SELECT-COMMAND statement in the
SUBFILE section of the NEWSPAPER INDEX file definition. The
user sees the full-screen interface from the time NEWSPAPER
INDEX is first selected for use.
HELP is the protocol that controls the online help menus and the
display of help messages. It is executed by the PUBLIC protocol
when the user presses PF1 while entering keywords on the search
screen or while viewing the results of a search. If a help system is
not required, then this protocol is not needed.
PRINT is the protocol that controls printing of a result. It is
executed by the PUBLIC protocol when the user presses PF9 while
viewing the results of a search. If printing is not required, then
this protocol is not needed.
ERRORS is the protocol that displays custom messages. It is
executed by the PUBLIC protocol in response to failure of the
FIND command. If custom error messages are not required, then
this protocol is not needed.

FORMATS:
PUBLIC is the format that creates and reads screens to get
keywords from the user and to display the results of a search.

MSG is the format that creates screens that display welcome
messages when NEVISPAPER INDEX is selected and an exit message
when it is exited. If such messages are not required, then this
format is not needed.

12

15

Components Of A Full-Screen Interface

HELP is the format that creates the help menu screens, gets the
user's selection, and displays the help information. If a help system
is not required, then this format is not needed.
PRINT is the format that controls the appearance of printouts. If
printing is not required, then this format is not needed.

VGROUPS:
PUBLIC defines variables used by the PUBLIC protocol and
format.
HELP defines variables used only by the help subsystem.
PRINT defines variables used only by the print subsystem.

Note again that a basic full-screen interface for a SPIRES subfile can be created
using only the PUBLIC protocol, format, and vgroup in conjunction with a protocol
subfile.

13

1 i3

p V

PUBLIC: A DATABASE-INDEPENDENT
PROTOCOL

The PUBLIC protocol that controls the full-screen interface for NEWSPAPER INDEX
has been written so as to be almost completely independent of any particular
SPIRES subfile. As a result, the PUBLIC protocol can be used with any application
that meets the following two conditions:

SPIRES formats for the application must conform to certain
naming conventions
The data to be displayed for each record can be displayed on a
single screen.

This section describes the logic followed by each procedure in the PUBLIC protocol
that controls the full-screen interface. The reader should refer to the source code in
Appendix 1. The description will discuss each procedure in turn as listed in the
source code.

MAIN
The MAIN procedure consists of only 35 lines of code. This procedure
initializes the session when the subfile is selected, displays a welcome
message, sets the PUBLIC format which controls the search and result
screens and then creates a blank search screen by executing the procedure
SRCH.SCRN. MAIN then enters a loop that executes indefinitely until the
user chooses to exit from the application.

Upon entering the loop, the SRCH procedure is executed to display the
search screen and to determine which of four actions the user wishes to take.
If the user's choice of action is HELP, the contents of the search screen are
stored for future use and the HELP protocol is invoked. The parameter S is
passed to the HELP protocol to indicate that the user is in search mode.
Upon returning from HELP, the search screen is restored and control
returns to the beginning of the loop to wait for the user's next action.

If the user's choice of action is FIND, then the procedure SRCH.GETARG is
executed to read the keywords from the search screen and to construct a
search argument. If no keywords were entered by the user so that the
SrchArg variable is null, then the loop is iterated. Otherwise, the procedure
SRCH.DOFIND is executed to conduct the search of the subfile. If there is no
result, or if the number of records found exceeds the limit in the variable
Max Result, then the loop is reentered and the user is returned to the search
screen and presented with an informative message. (Note that the search
screen will be restored showing the keywords previously entered so that the
user may simply edit the existing keywords rather than reentering the
entire search.) If a valid result is found, then the results are sequenced
according to the argument in the variable SequenceArg. The procedure
RSLT.STOR.KEYS is executed to save the keys of retrieved records in an
array, and the procedure RSLT is executed to display the results to the user.
When the user finishes reviewing the results and returns from the RSLT
procedure, a message calling attention to important function keys is overlaid

15

SPIRES Full-Screen Interface

on the COMMAND area. The loop is then iterated. This redisplays the
search screen containing the keywords that resulted in the successful
search, along with the new message about the function keys.

If the user's choice of action is AGAIN, the RSLT procedure is executed to
redisplay an existing result.

If the user's choice is EXIT, then the loop variable is set to FALSE, resulting
in termination of the loop. The format is set to MSG, the frame GOODBYE is
executed to display an exit message, and the system exits from SPIRES.

INITIALIZE SESSION
This procedure is executed once by MAIN when the system is started. First,
it sets various SPIRES system parameters. Then it defines four logical
"areas" used by SPIRES to buffer data before the data is written to the user's
CRT device. (The manual SPIRES Device Services explains SPIRES' use of
areas to buffer data being transferred between physical devices. Readers
unfamiliar with the concept may simply think of an area as a physical
location on the terminal screen.) The area COMMAND is 5 lines high by 79
columns wide. It is used to hold messages to the user and to display
information such as PF key definitions and screen titles. It is mapped to the
CRT screen to begin at line 1, column 1. The area MSG2USER is used to
hold messages to the user. It is mapped to the third line of the CRT so that it
overlaps the data written to the CRT from the COMMAND area. The area
RECORD is 19 lines long and is used to hold the contents of the search
screen and the output from the result screen. It is mapped to display on the
CRT starting on line 6, just below the area COMMAND. Finally, the area
FULLCRT is mapped to fill the entire physical screen for the display of the
opening logo.

The procedure th'n allocates the global vgroup PUBLIC to make available
the variables that will be used in the application. Note that the allocate
command is specific to the application because the ID of the VGROUP
contains the name of a userid, in this case NEWSPAPR. It would be possible
to eliminate this dependence on the application if it was convenient to define
vgroups on a userid separate from the userid owning the application in
question.
Finally, the help subfile is selected and a format is set. This part of the
procedure is also database specific because a database specific help file is
being used. A generic help subfile could be created and shared by many
applications, but it is easier to maintain help records for a particular
application by storing them in a dedicated help subfile.

RSLT

16

This procedure responds to the user's actions while viewing the results of a
search. When executed, the existing search screen with the user's keywords
is stored. The text of messages and labels appearing in the COMMAND area
are assigned to variables, and the COMMAND area is refreshed by execution
of the frame CMDOUT in the PUBLIC format. The RSLT.SCRNprocedure is
then executed to copy the currently selected record in the result to the
RECORD area and to update tie message describing which record in the
result is being viewed. RSLT then enters a loop that executes indefinitely.

Upon entering the loop, the physical terminal screen is refreshed by the
command WRITE CRT. This copies the contents of the logical areas to the
physical screen and parks the cursor out of the way at the bottom of the

is

PUBLIC: A Database-Independent Protocol

screen. The system then waits for the user to press a function key. The
SPIRES function $getarea(crt,fkey) sets the value of the variable CmdNum
depending on which function key is pressed by the user.

If the Enter key is pressed (CmdNum = 0), the loop is iterated and no action
is taken.

If PF1 is pressed (CmdNum = 201), the existing result screen is stored and
the help system is invoked with the parameter D to indicate help is wanted
with the display of results. Upon returning from the help system, the result
screen is redisplayed and the loop is iterated.

If PF3 is pressed, the RECORD area is blanked and control passes out of the
loop. The area CRT is restored so that the search screen and keywords are
again available fot display, and the procedure returns to the calling
procedure MAIN. Note that if the RECORD area is not first blanked, then
some data from the search result may show through on to the restored CRT
area in locations where the restored area does not contain information.

If PF7 is pressed, the previous record in the sequenced result is displayed.
The variable Index, which is the counter for the array holding the keys of
the retrieved records, is decreased by 1, and the procedure RSLT.SCRN is
executed to display the record. Note that when the record being viewed is
the first record in the stack, pressing PF7 causes the system to wrap around
to display the last record in the result.

If PF8 is pressed, the next record in the result is displayed by adjusting the
value of the variable Index. When the currently viewed record is the last
record in the stack, pressing PF8 causes the system to wrap around to
display the first record in the stack.

If PF9 is pressed, the protocol PRINT is executed to allow the user to print
the current result.

RSLT.SCRN
This procedure creates a message to the user indicating which record in a
result is being viewed. It then copies that record to the area RECORD using
the frame SRCHRESULT in the format PUBLIC.

RSLT.STOR.KEYS
This procedure fills the array Result Key with the values of the keys of the
records in the stack. Note that counting begins with Index = 1 rather than
with the SPIRES default array index of 0. This means the first element of
the array is not used. Hence, the array has to be defined as having one
element more than the number of records in the largest allowed result.

SRCH
This procedure responds to the user's actions while keywords are being
entered on the search screen. It is executed by the procedure MAIN with the
sole purpose of setting a value for the variable Action.

When executed, SRCH enters a loop and writes the contents of the area CRT
(in this case the search screen data entry form) to the physical terminal
screen and locates the cursor at the desired starting position for data entry.
The user is then able to enter keywords on the terminal screen before
pressing a function key. The SPIRES function $getarea(crt,fkey) sets the
value of the variable CmdNum depending on which function key is pressed
by the user.

i9
17

SPIRES Full-Screen Interface

If the Enter key (CmdNum = 0) is pressed, the loop is iterated and no action
is taken.

If PF1 is pressed (CmdNum = 201), the variable Action is set to HELP and
control returns to MAIN.

If PF2 is pressed, Action is set to FIND, and control returns to MAIN.

If PF3 is pressed, the SRCH.SCRN procedure is executed to create a new
blank search screen. This has the effect of erasing any keywords so that a
completely new search can be started. A message is created for the user, and
control is returned to MAIN.

If PF4 is pressed, the system checks to see if there is an existing result by
examining the value of the variable ResultKeyCount, which is the number of
keys stored in the array Result Key. If no result exists for viewing, a message
is created for the user and control returns to MAIN. If a result does exist,
the variable Action is set to AGAIN. Control returns to MAIN, which
redisplays the existing result. Note that the most recently obtained result
can be viewed even if a subsequent search fails to obtain a new result.

If PF10 is pressed, Action is set to EXIT, and control is returned to MAIN.

SRCH.DOFIND
This procedure issues the SPIRES command FIND andperforms validity
tests on the outcome. The procedure first clears any existing SPIRES result
so that if the FIND command fails then subsequent tests of the SPIRES
variable $result will be valid. (Note that keys of the records found in the
most recent successful search are still stored in the Result Key array. This
allows redisplay of the results of that successful search.) It then issues the
FIND command using the search argument in the variable SrchArg. If the
FIND command fails, then the SPIRES system error code and message
numbers are copied to variables and the ERRORS protocol is executed to
display an appropriate explanation to the user. The value of the SPIRES
system variable $result is then tested, an appropriate message is created,
and control is returned to the calling procedure. Note that a search that fails
due to invalid syntax will still display the message "No articles found...." The
ERRORS protocol is used to display a more informative message. Note also
that the text of Msg2User could be made more generic by beginning the
phrase with the words "No records...." Alternatively, a variable could be
defined to contain an appropriate word to replace the word "articles" so that
the protocol would be more independent of the subfile in use.

SRCH.GETARG
This procedure obtains the search argument created from the keywords
entered on the search screen. It does this by executing the frame
SRCHFORMGET from the format PUBLIC in the area RECORD.
SRCHFORMGET reads the area RECORD, which contains the contents of
the CRT screen. In the process, it builds the string variable SrchArg by
concatenating the keywords entered by the user with the names of
appropriate indexes. (SRCHFORMGET is the only frame in the PUBLIC
format containing a significant amount of procedural code.) If the user did
not enter any keywords then the procedure creates an appropriate message
to the user before returning control.

18

PUBLIC: A Database-Independent Protocol

SRCH.SCRN
This procedure sets the value of variables that control the content of
messages on the search screen. It then writes the information to the
COMMAND area by executing the frame CMDOUT in the format PUBLIC.
Finally, it executes the frame SRCHFORMDISP in the PUBLIC format to
create the data entry form in the RECORD area.

WELCOME
This procedure controls the welcoming screens by setting the format to MSG
and executing frames that display the messages.

41
19

FORMATS

The PUBLIC protocol described in the previous section is written in a manner that
is almost completely independent of the subfile with which it will be used. Virtually
all subfile-specific code for the full-screen interface is in the SPIRES format
PUBLIC, whici creates the screen displays and transfers data between SPIRES and
the physical de vices. Fortunately, the format code is almost entirely descriptive and
non-procedural. The system designer needs only to describe the location of data
elements and associated screen labels. A small amount of procedural code in the
SRCHFORMGET frame of the format is used to build the search argument from the
keywords entered on the search screen by the user.

A discussion of SPIRES formats sufficient to explain everything involved in the full-
screen interface is far beyond the scope of this document. The following conceptual
outline focuses on concepts specific to customizing a format to work with the protocol
PUBLIC. The discussion should provide the beginner with a focus for approaching
the documentation in the manual SPIRES Formats

One whose experience with SPIRES formats is limited to using $REPORT to format
a screen or printout may naturally think of a format as a means to arrange data on
the screen or on a printout in an attractive and convenient way. More importantly,
however, SPIRES formats provide a method for moving data among the physical
devices of the computer system. A format is used for getting data from a SPIRES
subfile and arranging it for presentation on the screen. Formats also are used to
read data from the computer screen and to pass data to other SPIRES subsystems.

Most of the code needed to create a functioning search screen, and all of the code
necessary to create the result screen, is purely descriptive and non-procedural.
Although the FORMATS language is highly formalized, almost all of the code that
gets information from the user and displays data to the user can be understood by
non-programmers. The small amount of procedural code necessary to construct a
search argument from the data entered on the search screen is shown in Appendix 3
in the source code for the frame SRCHFORMGET. Generalizing the code for a
search screen more complex than that used for NEWSPAPER INDEX can be done in an
obvious, straightforward way.

A skeletal outline for the PUBLIC format to be used with the PUBLIC protocol can
be constructed without discussing the details of the data elements in a particular
subfile.

First, note that a SPIRES format is divided into frames. Each frame is associated
with a particular function or action, such as getting data from a screen or getting
data from the subfile and displaying it on the screen. Each frame in a format is
further divided into label-groups. Each label-group has a particular function or
performs a particular action within its frame. A single label-group may read
keywords from particular line on a data entry form, or it may display the value of a
single data element at a particular position on the result screen. In each case, the
code in a label-group is almost solely descriptive rather than procedural.

22 21

SPIRES Full-Screen Interface

Below is the functional skeleton of the SPIRES format PUBLIC as used in
NEWSPAPER INDEX. The important feature of this outline is the naming conventions
for the frames. These naming conventions are those used by the PUBLIC protocol
when it executes or uses frames to create the screen displays. Full details for this
format as customized for use with NEWSPAPER INDEX are in Appendix 3. Study of
that format will demonstrate to the reader how to write procedural code in each
label group of the SRCHFORMGET frame to build a search argument that can be
used with the SPIRES command FIND.

ID = userid:PUBLIC;
FILE = userid:SpiresFileName;
RECORD-NAME = REC01;
FRAME-ID = CMDOUT;

COMMENTS = Writes complete command area, top of screen;

DIRECTION = OUTPUT;
FRAME-DIM = Number0fRows,NumberOfColumns;
USAGE = ALL, NAMED;
...label groups...

FRAME-ID = MSGOUT;
COMMENTS = Writes new message to the area MSG2USER;

DIRECTION = OUTPUT;
FRAME-DIM = Number0fRows,NumberOfColumns;
USAGE = ALL, NAMED;
...label groups...

FRAME-ID = SRCHFORMDISP;
COMMENTS = Writes blank search screen to be filled in by user;

DIRECTION = OUTPUT;
FRAME-DIM = Number0fRows,NumberOfColumns;
USAGE = ALL, NAMED;
...label groups...

FRAME-ID = SRCHFORMGET;
COMMENTS = Reads screen to get keywords. Builds search argument;

DIRECTION = INOUT;
FRAME-DIM = Number0fRows,NumberOfColumns;
USAGE = NAMED;
...label groups...

FRAME-ID = SRCHRESULT;
COMMENTS = Displays search results;
DIRECTION = OUTPUT;
FRAME-DIM = Number0fRows,NumberOfColumns;
...label groups...

FORMAT-NAME = PUBLIC;
ALLOCATE = NEWSPAPR:PUBLIC;
FRAME-NAME = CMDOUT;

FRAME-TYPE = XEQ;
FRAME-NAME = MSGOUT;

FRAME-TYPE = XEQ;
FRAME-NAME = SRCHFORMGET;

FRAME-TYPE = XEQ;
FRAME-NAME = SRCHFORMDISP;

FRAME-TYPE = XEQ;
FRAME-NAME = SRCHRESULT;

FRAME-TYPE = DATA;

This skeletal outline can be used with any SPIRES subfile to create a full-screen
interface. Generically chosen names for the format, frames, and global variable
group are independent of the SPIRES subfile. Only the elements of each label group

22 23

Formats

are dependent on the subfile; for they must refer to the names of data elements in
the subfile.
The format is named PUBLIC. The frame CMDOUT describes the locations and
characteristics of text to be written to the command area of the screen. In
NEWSPAPER INDEX the command area constitutes the top five lines of the screen. It
is used to display a title for the screen, instructions and messages to the user, a list
of function keys, and a divider between these prompts and the portion of the screen
used for data entry and display.

The frame MSGOUT is used to display a message to the user. In NEWSPAPER INDEX,

the message is written to the third line of the screen, overlapping the area
COMMAND. The frame SRCHFORMDISP creates the full-screen form on which the
user enters keywords for a search. The frame SRCHFORMGET reads the screen to
get the keywords, and it builds the search argument passed by the PUBLIC protocol
to the SPIRES command FIND. The frame SRCHRESULT displays the result of the
search.

23

ADAPTING THIS SYSTEM

The appendices to this paper contain complete source code for the NEWSPAPER .

INDEX application as it was working in the Virginia Tech Libraries on 9/24/92 using
SPIRES version 89.03 under IBM's CMS operating system. A copy of the code may
be obtained from the author by sending a request to KRIZ@VTVMLBITNET or
KRIZ@VTVM1.CC.VT.EDU.

A basic, functioning full-screen interface can be devised for any SPIRES subfile
using the PUBLIC protocol and PUBLIC vgroup almost without modification in
conjunction with a subfile-specific PUBLIC format which follows the required
naming conventions. Note that the file definition for the protocol subfile is not
included because such a subfile can be generated by a SPIRES system utility
invoked by the PERFORM BUILD PROTOCOLS command.

The steps below may be followed in applying the PUBLIC protocol to an existing
SPIRES subfile. Code for the PF1 key to invoke the help system, the PF9 key to
invoke the print protocol, and the code for error testing should be commented out of
PUBLIC protocol until after the search and display systems are functioning.

1. Design a search screen for entering keywords corresponding to the
indexes in the subfile.

2. Design a result screen to display records retrieved in a search.
3. Add the vgroup PUBLIC as shown in Appendix 2 to the VGROUPS

subfile and compile.
4. Write a format named PUBLIC to create the screens for the

subfile. Follow the required naming convention for frames in the
format so they can be used and executed by the PUBLIC protocol.
Add the format to the FORMATS subfile and compile.

5. Create a protocol subfile using the PERFORM BUILD
PROTOCOLS command.

6. Add the protocol PUBLIC as shown in Appendix 1 to the protocol
subfile.

7. Select the subfile with the data and use the SET XEQ command to
activate the protocol subfile.

8. Issue the command ..PUBLIC.
9. Customize and add other modules, including HELP, PRINT, and

ERRORS.

2u
25

N

APPENDIX 1. PUBLIC PROTOCOL

The workings of this protocol are fully described on page 15. In reading the code, .

note that there are almost no references that are specific to the NEWSPAPER INDEX

applic_tion. The exceptions are the lines in the INITIALIZE.SESSION procedure

that allocate the vgroup NEWSPAPR:PUBLIC and select the subfile NEWSPAPER

HELP. All procedures, variables, and format frames are generically named. However,

the formats for NEWSPAPER INDEX must be written to conform to the naming
conventions used in this protocol. The shading indicates a single line of code that has

wrapped to a second physical line on the page because it does not fit between the

page margins. Such lines should be entered as single lines in a program.

* PUBLIC (Add 08/27/91, upd 09/24/92 at 15:31 by NEWSPAPR)

!set noecho

- SEE DOCUMENTATION AND USAGE NOTES AT END OF FILE

- IMPORTANT: Check commenting of ++INITIALIZE and
installing for public use

attn='-' before

MAIN PROGRAM BEGINS

++MAIN
xeq proc INITIALIZE.SESSION
xeq proc WELCOME
set format PUBLIC
xeq proc SRCH.SCRN

WHILE #SeeMore

xeq proc SRC&

if #Action = 'HELP'

if #Actical = 'FIND'

SEARCH: Press PF3'

; Initialize SPIRES and variables
Display welcome messages

; Controls search and display
Create the search screen

Get search argument and/or action

then beginblock ; Get help for searching

store area CRT
HELP S
restore area CRT
iterate
endblock
then beginblock
xeq proc SRCH.GETARG ; Get search argument,

set msg if null

if #SrchArg = " then iterate
xeq proc SIRCH.D0FIND ; Search, test result,

set msg if out of range

if $result = 0 or > #MaXResult then iterate

/sequence #SequenceArg ; Sort records

let SrchArgOX = #SrchArg
xeq proc RSLT.STOR.KEYS
xeq proc RSLT ; View result

Put keys of result in array

let Msg2User = 'MODIFY SEARCH: Edit keywords, press PF2 NEW

in MSG2USER, xeq frame MSGOUT
iterate
endblock

if #Action = 'AGAIN' then beginblock
xeq proc RSLT
iterate
endblock

if #Action = 'EXIT' then let SeeMore = $FALSE

then iterate

ENDWII/LE

View existing result

26.

BEST COPY A'EARS

27

SPIRES Full-Screen Interface

set format MSG
in RECORD, xeq frame GOODBYE

EXIT QUIET

+ +INITIALIZE. SESSION

MAIN PROGRAM ENDS

PROCEDURES BEGIN

; leave SPIRES

set messages 0 ; No SPIRES messages will be sent to terminal
set nowrite ; Turn off automatic writing when an area is full
set normad ; Turn off automatic reading when an area is full
set nostop ; Command failure won't stop execution.

Check for failure with traps in protocol as necessary

define area COMMAND (5,79) on CRT(1,1) bgprotect ; prompts, etc
define area MSG2USER (1,79) on CRT(3,1) bgprotect ; message updates
define area RECORD (19,79) on CRT(6,1) bgprotect ; search form G result
define area FULLCRT (24,79) on CRT(1,1) bgprotect ; for greetings

allocate NEWSPAPR:PUBLIC ; Global VGROUP

through HELPPATH select NEWSPAPER HELP ; Select the help subfile
through HELPPATH set format HELP ; Set the help format

RETURN

++RSLT
- Display search results

store area CRT ; Save so can redisplay keywords for
subsequent modification

let ScrnTitle = #RsltScrnTitle
let Instruction = 'FIND: ' #SrchArgOX
let FnKeys = 'PF1=Help PF3=Quit viewing PF7=Prevlous article PF8=Next article
PF8=Print'
in COMMAND, xeq frame CMDOUT

xeq proc RSLT.SCRN ; Display first record

WHILE #Forever
write CRT, read cursor(24,1) attn='-' ; Write results to CRT, park cursor out of

way

28

let CmdNum = $getarea(crt,fkey)
if #CmdNum = 0 then iterate
if #CmdNum = 201 then beginblock

store area CRT
..HELP 1)
restore area CRT
iterate
endblock

Get function key
<Enter> no action
<PF1> Help for display of records

if #CmdNum = 203 then blank RECORD ; Quit displaying results
then leave

if #CmdNum = 207 then beginblock ; Display previous record
if #Index > 1 then let Index = #Index -1
else let Index = #ResultKeyCount
xeq proc RSLT.SCRN ; Update msg & record
iterate
endblock

if #CmdNum = 208 then beginblock ; Display next record
if #Index < #ResultXeyCount then let Index = #Index + 1
else let Index = 1
xeq proc RSLT.SCRN
iterate
endblock

if #CmdNum = 209 then beginblock ; Print the result
PRINT

VEST LV/MISLE

Appendix 1. PUBLIC protocol

iterate
endblock

F14DWHILE

restore area CRT ; Restore search screen with keywords that
generated result, but with new Msg2User

RETURN

++RSLT.SCRN
- Refresh message and record areas during display of result

if4ResultKeYdount'l=1::let Msg2User ='ReCord fandex'' of TIResUltKeyCount,'

else if #IndeX< #ResultKeyCount: let Msg2User = 'Record ' #Index ' of ' #ResultKeyCount

else let Magatser = 'LAST RECORD:: RecOrd #Indek #ResultXeyCount

PF3'to'quit' .

else eval $getarea(crt,bell)

in MSG2USER, xeq frame MSGOUT
/in RECORD, using SRCHRESULT, display #ResultKey::Index

RETURN

++RSLT.STOR.KEYS
- Fill array with keys to search result starting at Index

let ResultKeyCount = $stack
for stack
let Index = 0
WHILE Index < $stack

let Index = #Index + 1
in null show key next end = 'leave'
let ResultKey::Index = $key

ENDWHILE
let Index = 1

RETURN

at 1

++SRCH
- Display search screen and return search argument and/or action

WHILE #Forever
/write CRT, read cursor(#CrsrSrchRow,#CrsrSrChCol) attn='-'

let CmdNum = $getarea(crt,fkey) ; Get function key

if #CmdNum = 0 then iterate ; <Enter> No action

if #CmdNum = 201 then let Action = 'HELP' ; <PF1>
then leave

if #CmdNum = 202 then let Action = 'FIND'
then leave

if #CmdNum = 203 then let Msg2User =''Words erased. PF4 shows an existing result, PF10

exits system.'
then xeq pros SRCH.SCRN ; Rebuild search scrn
then iterate

if #CmdNum = 204 then beginblock
if #ResultKeyCount = 0 then beginblock

let Msg2User = 'No result to display'
eval $getarea(crt,bell)
in MSG2USKR, xeq fram MSGOUT
iterate
endblock

else beginblock
let Action
leave
endblock

endblock
if #CmdNum = 210 then let Action

then leave

= 'AGAIN'

= 'EXIT'

23

HST COPY AURAE

29

SPIRES Full-Screen Interface

ENDWHILE

RETURN

++SRCH.D0FIND
- Find and test search result
clear result ; So if command fails, $result will be null

; and not value from previous result

/find #SrchArg

if Vo then beginblock
let ErrHsgNum = $msgnum
let ErrSNum = $snum
let ErrENum = $enum
ERRORS
endblock

Test for failed FIND command
Store the SPIRES message numbers

Display an error message

if $result = 0 then let Msg2User = 'No articles found for ' #SrchArg

if $result > #MaxIlesult then let Msg2User = $result articles retrieved. Please narrow

your search.' .

if $result = 0 or $result > #MaxResult then eval $getarea(crt,bell)
then in MSG2USER, xeq frame MSGOUT

RETURN

++SRCH.GETARS
- Get the search argument

in RECORD, xeq frame SRCHFORMGET ; Get search argument from screen

if #SrchArg = " then beginblock ; Check for null SrchArg
let Msg2User = 'You must enter a keyword or date'

eval $getarea(crt,bell)
in MSG2USER, xeq frame MSGOUT
endblock

RETURN

++SRCH.SCRN
- Reset the screen display for searching

/let ScrnTitle = '#SrchScrnTitle' ; Assign variables

let Instruction = 'Enter keywords, limit dates, then press PF2'

let FnKeys = 'PF1=Help PF2=Do search PFS=Erase words PF4=Show again

in COMMAND, xeq frame CMDOUT ; Create command area

in RECORD, xeq frame SRCHFORMDISP ; Create blank search form

RETURN

PF10=Exit'

++WELCOME

set format MSG ; MSG contains text screens

in FULLCRT, xeq frame LOGO ; Display large title screen

ASK AREA FULLCRT 24,1 PROMPT = 'Press <ENTER> to continue' attn='-' ; Wait for <ENTER>

in FULLCRT, xeq frame GREETING ; Say hello, wait for <ENTER> key

RETURN
PROCEDURES END

DOCUMENTATION AND USAGE NOTES BEGIN

- PUBLIC protocol controls the full screen application cf the SPIRES

database NEWSPAPER INDEX.
PA1 (esc Z) aborts to CP. CLEAR (ATM key has no effect

- Written by: H. H. Kriz, University Libraries, 231-7052, KRIZ@VTVM1

- Called by: SELECT-COMMAND In public access subfile NEWSPAPER INDEX

- Calls:

30

BEST CO Qum

Appendix 1. PUBLIC protocol

SUBFILES: NEWSPAPER HELP - Text for help screens
NEWSPAPER PROTOCOLS - Set xeq by SELECT-COMMAND in NEWSPAPER INDEX

FORMATS for subfile NEWSPAPER INDEX
MSG - Displays text screens on entry & exit
PUBLIC - Controls search, display

PROTOCOLS executed by PUBLIC protocol from NEWSPAPER PROTOCOLS subfile
ERRORS - Displays custom error messages
HELP - Controls menus and text display for NEWSPAPER HELP
PRINT - Controls printing of a search result

VGROUPS allocated by PUBLIC protocol
PUBLIC - All variables used in PUBLIC protocol and PUBLIC format

- Variables used in PUBLIC protocol compiled in vgroup NEWSPAPR:PUBLIC

Action - instruction returned by function key menu
Cmdklum - value returned for function key by $getarea(crt,fkey)

- CrsrSrchRow - starting row of cursor on search screen
CrsrsrchCol
ErrENum
ErrMsgNum
ErrSNum
FtKeys
Forever
Index
Instruction
MaxResult
Msg2User
ResultKey
ResultKeyCount
RsitScrnTitle
ScrnTitle
SeeMore
SequenceArg
SrchArg
SrChArgOK
SrchScrnTitle

- starting column of cursor on search screen
- set to value of Senum following error
- set to value of $msgnum following error
- set to value of $snum following error
- text listing PFkey actions
- loop variable
- index counter for ResultKey array
- text telling user what action to take on a zr'reen
- maximum number of records allowed in a result
- message displayed in command area
- array of keys for the search result
- number of record keys in ResultKey array
- text of title for result screen
- screen title displayed in COMMAND area
- loop variable
- argument for sequence command
- argument for FIND command

search argument which last produced a result
- text of title for search screen

- HISTORX: Adapted from MEDIA system, 8/27/91 by H. Kriz
- Modified: 9/21-24/92 by H. Kriz to use generic names and variables

DOCUMENTATION AND USAGE NOTES END

30 31

VGROUP = NEWSPAPR:PUBLIC;
COMMENTS =
COMMENTS = For use with the PUBLIC format and PUBLIC protocol for
COMMENTS = NEWSPAPER INDEX
COMMENTS =
AUTHCGt= H. M. Kriz, University Libraries, 231-7052;
MODDATE = THUR. SEPT. 24, 1992;
DEFDATE = THUR. OCT. 24, 1991;
VARIABLE = Action;

LENGTH = 5;
TYPE = STRING;
COMMENTS = Instruction returned by function key menu;

VARIABLE = CmdNum;
LENGTH = 4;
TYPE = INT;
COMMENTS = Value returned for function key by $getarea(crt,fkey);

VARIABLE = CrsrSrchCol;
LENGTH = 1;
TYPE = INT;
COMMENTS = Starting column for the cursor on the search screen;
VALUE = 5;

VARIABLE = CrsrSrchRow;
LENGTH = 1;
TYPE = INT;
COMMENTS = Starting row for the cursor on the search screen;
VALUE = 7;

VARIABLE = DateArg;
LENGTH = 32;
TYPE = STRING;
COMMENTS = Date portion of search argument;

VARIABLE = ErrENum;
TYPE = INT;
COMMENTS = Set to value of $enum when error occurs;

VARIABLE = ErrMs/Num;
TYPE = INT;
COMMENTS = Set to value of $msgnum when error occurs;

VARIABLE = ErrSNum;
TYPE = INT;
COMMENTS = Set to value of $snum when error occurs;

VARIABLE = FtKeys;
LENGTH = 79;
TYPE = STRING;
COMMENTS = Function key list in command area;

VARIABLE = Forever;
TYPE = FLAG;
COMMENTS = Loop variable;
VALUE = $TRUE;

VARIABLE = Index;
LENGTH = 4;
TYPE = /NT;
COMMENTS = Index variable for ResultKey array;

VARIABLE = Instruction;
LENGTH = 79;
TYPE = STRING;
COMMENTS = Text in instruction line of command area;

VARIABLE = MaxResult;
LENGTH = 4;
TYPE = INT;
COMMENTS = Maximum size of search result. Value is 1 less than array size;

VALUE = 250;
VARIABLE = Msg2User;

LENGTH = 79;
TYPE = STRING;
COMMENTS = Message sent to user;

VARIABLE = ResultKey;
OCCURS = 251;

APPENDIX 2. PUBLIC VGROUP

31

Cr4TY ULABLE

33

SPIRES Full-Screen Interface

LENGTH = 4;
TYPE I= INT;
COMMENTS = Array to hold keys of result stack. Occurs MaxResult + 1;

INDEXED-BY = Index;
VARIABLE = ResultKeyCount;

LENGTH = 4;
TYPE = INT;
COMMENTS = Number of record keys in ResultKey array;

VARIABLE = RsltScrnTitle;
LENGTH = 20;
TYPE = STRING;
COMMENTS = Title appearing on result screen;
VALUE = 'ARTICLES';

VARIABLE = ScrnTitle;
LENGTH = 20;
TYPE = STRING;
COMMENTS = Text for screen title in command area;

VARIABLE = SeeMore;
TYPE = FLAG;
COMMENTS = Loop variable;
VALUE = $TRUE;

VARIABLE = SequenceArg;
LENGTH = 20;
TYPE = STRING;
COMMENTS = Argument for sequence command;
VALUE = 'date(d) title';

VARIABLE = SrchArg;
LENGTH = 400;
TYPE = STRING;
COMMENTS = Search argument built from reading screen;

VARIABLE = SrchArgOK;
LENGTH = 400;
TYPE = STRING;
COMMENTS = Search argument which last produced a result;

VARIABLE = SrchScrnTitle;
LENGTH = 20;
TYPE = STRING;
COMMENTS = Title appearing on search screen;
VALUE = 'NEWSPAPER SEARCH';

tJ <,

34

0

ID = NEWSPAPR:PUBLIC;
COMMENTS =
COMMENTS = PUBLIC format for fullscreen interface for NEWSPAPER INDEX -;

COMMENTS = Modified 9/21/92 by H. Kriz -;

COMMENTS = Names of FORMAT, VGROUP and variables changed to use more -;

COMMENTS = generic form
-;

COMMENTS =
AUTHOR = H. H. Kriz, University Lizies,231-7052;
DEFDATE = WED. SEPT. 4, 1991;
MODDATE = MON. SEPT. 21, 1992;
MODTIME = 11:10:20;
FILE = NEWSPAPR:NEWSPAPERINDEX;
RECORD-NAME = REC01;
FRAME -ID = CMDOUT;

COMMENTS = Writes complete command area, top of screen;

DIRECTION = OUTPUT;
FRAME-DIM = 5,79;
USAGE = ALL, NAMED;
LABEL = SCRNTITLE;

VALUE = #ScrnTitle;
LENGTH = 20;
START = 1,30;
UPROC = set adjust center;
DISPLAY = BRIGHT;
PUTDATA;

LABEL = INSTRUCTION;
VALUE = #Instruction;
LENGTH = 79;
START = 2,1;
PUTDATA;

LABEL = MSG2USER;
VALUE = #Msg2User;
LENGTH = 79;
START = 3,1;
DISPLAY = BRIGHT;
PUTDATA;

LABEL = FNKEYS;
VALUE = #FnKeys;
START = 4,1;
PUTDATA;

LABEL = DIVIDER;
VALUE = '=';
UPROC = set repeat;
PUTDATA;

FRAME-ID = MSGOUT;
COMMENTS = Writes new message to the area MSG2USER. Overlaps COMMAND area;

DIRECTION = OUTPUT;
FRAM -DIM = 1,79;
USAGE = ALL, NAMED;
LABEL = MSG2USER;

VALUE = #Msg2User;
LENGTH = 79;
START = 1,1;
DISPLAY = BRIGHT;
PUTDATA;

FRAME-ID = SRCHFORMD/SP;
COMMENTS = Writes blank search screen to be filled in by user;

DIRECTION = OUTPUT;
FRAME-DIM = 19,79;
USAGE = ALL, NAMED;
LABEL = PROMPT;
VALUE = 'Enter subject and title keywords on the lines below:';

START = 1,1;
DISPLAY = BRIGHT;
PUTDATA;

LABEL;

APPENDIX 3. PUBLIC FORMAT

33

EST Ap =MAMIE

35

SPIRES Full-Screen Interface

VALUE = '==>';
START = 2,1;
DISPLAY = BRIGHT;
PUTDATA;
LOOP = 2;
XSTART = *+1,1;

LABEL;
MARGINS = 5,78;
LENGTH = 219;
START = 2,5;
DISPLAY = UNPROTECT;
PUTDATA;

LABEL = DATE.BEGIN;
TSTART = 6,1;
TITLE = 'EXCLUDE articles published before (mm/dd/yy): ';

LENGTH = 8;
START = *,47;
DISPLAY = UNPROTECT;
PUTDATA;

LABEL = DATE.END;
TSTART = 8,1;
TITLE = ' EXCLUDE articles published after (mm/dd/yy): ';

LENGTH = 8;
START = *,47;
DISPLAY = UNPROTECT;
PUTDATA;

FRAME-ID = SRCHFORMGET;
COMMENTS = Reads screen to get keywords. Builds search argument;
DIRECTION = TROUT;
FRAME-DIM = 19,79;
USAGE = NAMED;
LABEL;
UPROC = let SrchArg = ";
UPROC = let DateArg = ";

LABEL = KEYWORDS;
MARGINS = 5,78;
LENGTH = 219;
START = 2,5;
GETDATA;
INPROC = $squ;
UPROC = if $cval = " then jump DATE.BEGIN;
UPROC = let SrchArg = 'KW ' $cval;

LABEL = DATE.BEGIN;
LENGTH = 8;
START = 6,47;
GETDATA;
INPROC = $squ;
UPROC = if $cval = " then jump DATE.END;
UPROC = else let DateArg = 'DATE >- ' $cval;

LABEL = DATE.END;
LENGTH = 8;
START = 8,47;
GETDATA;
imisoc = $squ;
UPROC = if $cval = " then jump FINISH.ARG;
UPROC = if #DateArg then BEGINBLOCK;
UPROC = let DateArg = #DateArg ' and <= ' $cval;

UPROC = jupp FINISH.ARG;
UPROC = ENDBLOCK;
UPROC = let DateArg = 'DATE <= ' $cval;

LABEL = FINISH.ARG;
UPROC = if #DateArg = " then RETURN;
UPROC = if #SrchArg: let SrchArg = # SrchArg ' and ' #DateArg;

UPROC = else let SrchArg = #DateArg;
FRAME-ID = SRCHRESULT;

COMMENTS = Displays search results;
DIRECTION = OUTPUT;
FRAME-DIM = 19,79;
LABEL = SOURCE;

TSTART = 2,1;
TITLE = 'Source: ';

GETELRH;

36

Appendix 3. PUBLIC format

START = 2,*+1;
PUTDATA;

LABEL = DATE;
TSTART = *,27;
TITLE = 'Date: ';

GETELEM;
START = *,33;
PUTDATA;

LABEL = PAGE;
TSTART *,44;
TITLE = 'Page: ';

GETELEM;
START = *,*+1;
PUTDATA;

LABEL = TITLE;
TSTART = 3,2;
TITLE = 'Title: ';

GETELEM;
MARGINS = 9,79;
MARROWS = 2;
START m *,9;
PUTDATA;

LABEL = SUBJECT;
ENTRY-UPROC = set buildsep ;

ENTRY-UPROC = set buildend .;
TSTART = *+1,2;
TITLE = 'Subjects: ';

GETELEM;
DEFAULT;
MARGINS = 12,79;
MAXMOWS = 12;
START = *,12;
PUTDATA;
LOOP;

FORMAT-NAME = PUBLIC;
ALLOCATE = NEWSPARR:PUBLIC;
FRAME-NAME = CMDOUT;

FRAME-TYPE = XEQ;
UPROC = set padchar = Stermad;
UPROC = set protect;

FRAME-NAME = MSGOUT;
FRAME-TYPE = XEQ;
UPROC = set padchar = Stermpad;
UPROC = set protect;

FRAME-NAME = SRCBFORMGET;
FRAME-TYPE = XEQ;
UPROC = set padchar = Sterppad;
UPROC = set protect;

FRAME-NAME = SRCBFORMDISP;
FRAME-TYPE = XEQ;
UPROC = set padchar = Stermpad;
UPROC = set protect;
UPROC = set autotab;
UPROC = set tdisplay = bright;
UPROC = set display = unprotect;

FRAME-NAME = SRCBRESULT;
FRAME-TYPE = DATA;
UPROC A. set padchar = Stermpad;
UPROC = set protect;
UPROC = set autotab;
UPROC = set tdisplay = bright;

35
37

`-

APPENDIX 4. HELP PROTOCOL

* HELP (Add 09/03/91, Upd 09/24/92 at 15:55 by NEWSPAPR)
!set noecho

HELP protocol for NEWSPAPER INDEX. Executed by PUBLIC protocol

- Executes frames in PUBLIC format for COMMAND area
- in addition to frames in format HELP

Written: 9/3/91 by H. M. Kriz, University Libraries
Modified: 9/21-24/92 by H. Kriz

- Changed names and variables to more more generic form

let WhichHelp = $ask

++HELP

let Msg2User = "

xeq proc HELP.SCRN

WHILE #Forever
write CRT,
let cmdnum
if #cmdnum
if #cmdnum

S for searching, D for displaying result
WhichHelp passed as parameter for
_HELP issued by PUBLIC protocol

Clear any previous setting

Create help menu

read cursor(1,29)
= Sgetarea(crt,fkey)
= 0 then iterate
= 202 then beginblock

attn='-'

Get user's choice
in RECORD, through HELPPATH xeq frame HELP. GET

/if #WhichHelp = 'S' then let HelpNumS = #HelpNum
/if #WhichHelp = 'D' then let HelpNumD = # HelpNum
/xeq proc HELP4WhichHelp.D0 ; Display requested

help or get msg
in MSG2USER, xeq frame MSGOUT ; Update msg line

for invalid choice
iterate
endblock

if #cmdnum = 203 then leave
ENDWHILE

RETURN

++HELP.SCRN
- Set up help menu

Quit help

if #WhichHelp = 'S' then beginblock
let ScrnTitle = 'HELP FOR SEARCHING'
/let HelpNum = #HelpNUmS
endblock

if #WhichHelp = 'D' then beginblock
let ScrnTitle = 'HELP FOR DISPLAY'

/let HelpNum #HelpNumD
endblock

let Instruction = 'Enter the number of the desired topic, press PF2'
let FnKeys = ' PF2=View selection PF3=Quit HELP'

in COMMAND,
/in RECORD,

RETURN

xeq frame CMDOUT
through HELPPATH xeq frame HELP #WhichHelp.MENU

++HELP.D.D0
- Get help while displaying a search result

- Determine the help topic from the number entered by user

3d

BESi CW7 AWL LE

39

SPIRES Full-Screen Interface

if #HelpNumD < 1 or #HelpNumD > 4 : beginblock ; check valid number
let Msg2User = 'Choose a number from 1 to 4'
eval $getarea(crt,bell)
return
endblock

if # HelpNumD = 1 then let HelpTopic = ,GENERAL.D'
if # HelpNumD = 2 then let HelpTopic = 'SOURCE.D'
if # HelpNumD = 3 then let HelpTopic = 'SUBJECT.D'
if #HelpNumD = 4 then let HelpTopic = 'FNKEYS.D'

/through HELPPATH using SHOWHELP, dis #HelpTopic ; display the help

RETURN

++HELP.S.D0
- Get help while entering keywords on the search screen

- Determine the help topic from the number entered by user

if #HelpNum = '90' : beginblock
/browse kw #brkw
return
endblock

Keyword browsing

if #HelpNum < 1 or #HelpNumS > 13 : beginblock ; check valid number
let Hsg2User = 'Choose a number from 1 to 13'
eval 5getarea(crt,bell)
return
endblock

if #HelpNum = 1 then let HelpTopic = 'GENERAL.S'
if #HelpNum = 2 then let HelpTopic = 'FNKEYS.S'
if #HelpNum = 3 then let HelpTopic = 'EEYWORD.S'
if #HelpNum = 4 then let HelpTopic = 'DATE.S'
if #HelpNum = 5 then let HelpTopic " 'NAMES.S'
if #HelpNum = 6 then let HelpTopic = 'NEWSPAPER.S'
if #HelpNum = 7 then let HelpTopic = 'BOOLEAN.S'
if #HelpNum = 8 then let HelpTopic = 'COMVOUND.S'
if #HelpNum = 9 then let HelpTopic = 'NATURAL.S'
if #HelpNum = 10 then let HelpTopic = 'WILDCARD.S'
if #HelpNum = 11 then let HelpTopic = 'COST.S'
if #HelpNum = 12 then let HelpTopic = 'TECHNICAL.S'
if #HelpNum = 13 then let HelpTopic = 'SPECIAL.S'

/through HELPPATH using SHOWHELP, die #HelpTopic ; display the help

RETURN

37

40

APPENDIX 5. HELP VGROUP

VGROUP = NEWSPAPR:HELP;
COMMENTS = For use with NEWSPAPER HELP and the HELP protocol;

COMMENTS = in the NEWSPAPER INDEX application;
AUTHOR = H. M. Kriz, University Libraries, 231-7052;

MODDATE = MON. SEPT. 21, 1992;
DEFDATE = WED. SEPT. 4, 1991;
VARIABLE = /WM;

LENGTH = 10;
TYPE = STRING;
COMMENTS = String where keyword index browsing begins;
VALUE = 'A';

VARIABLE = HelpNum;
LENGTH = 4;
TYPE = /NT;
COMMENTS = Number selected from the help menu;
VALUE = 1;

VARIABLE = HelpNumD;
LENGTH = 4;
TYPE = INT;
COMMENTS = Saved value of HelpNum from DISPLAY;
VALUE = 1;

VARIABLE = HelpNumS;
LENGTH = 4;
TYPE = INT;
COMMENTS = Saved value of HelpNum from SEARCH;
VALUE = 1;

VARIABLE = HelpTopic;
LENGTH = 20;
TYPE = STRING;
COMMENTS = Key to selected record in NEWSPAPER HELP subfile;

VARIABLE = StartColl;
LENGTH = 4;
TYPE = INT;
COMMENTS = First starting column for output;

VARIABLE = StartCol2;
LENGTH = 4;
TYPE = INT;
COMMENTS = Second starting column for output;

VARIABLE = WhichHelp;
LENGTH = 1;
TYPE = STRING;
COMMENTS = Indicator passed to HELP by PUBLIC;

41

ID = NEWSPAPR:HELP:
COMMENTS =
COMMENTS = Formats help screens for NEWSPAPER INDEX
COMMENTS = Modified 9/21/92 by H. Kriz -;

COMMENTS = Adopted generic FORMAT and VGROUP names -;

COMMENTS =
AUTHOR = H. M. Kriz, University Libraries, 703-231-7052;
DEFDATE = THUR. OCT. 24, 1991;
MODDATE = MON. SEPT. 21, 1992;
MODTIME = 10:33:56;
FILE = NEWSPAPR:NPHELP;
RECORD-NAME = REC01;
FRAME-ID = HELP.D.MENU:

COMMENTS = Display menu of help topics while displaying result:

DIRECTION = OUTPUT;
FRAME-DIM = 19,79;
USAGE = NAMED;
LABEL;
UPROC = let StartColl = 6;
UPROC = let StartCol2 = 36;
UPROC = if #HelpNum = 0 then let HelpNum = 1;

LABEL;
TSTART = 3,#StartColl;
TITLE = '1) ';

VALUE = 'General information';
START = *,*+1;
PUTDATA;

LABEL;
TSTART = *+2, #StartColl;
TITLE = '2) ';

VALUE = 'Source';
START = *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartColl;
TITLE = '3) ';

VALUE = 'Subjects';
START = *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartColl:
TITLE = '4) ';

VALUE = 'Function keys';
START = *,*+1;
PUTDATA;

LABEL = INSTRUCTION;
TSTART = 1,3;
TITLE = 'Enter number of topic ==> ';
VALUr = SSTRING(#BelpNum);
LENGTH = 2;
START = *,29;
DISPLAY = UNPROTECT;
PUTDATA;

FRAME-ID = HELP.S.HE14U;
COMMENTS = Display menu of help topics while in search mode;

DIRECTION = OUTPUT;
FRAME-DIM = 19,79;
USAGE = NAMED;
LABEL;

UPROC = let StartColl = 6;
UPROC = let StartCol2 = 36;
UPROC = if #HelpNum = 0 then let HelpNum = 1;

LABEL;
TSTART = 3,#StartColl;
TITLE = '1)
VALUE = 'General information';

APPENDIX 6. HELP FORMAT

BM CO taiLABLE

43

SPIRES Full-Screen Interface

START = *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartColl:
TITLE = '2) ';

VALUE = 'Function keys':
START = *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartColl;
TITLE = '3) ';

VALUE = 'Keywords';
START = *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartColl;
TITLE = '4) ';

VALUE = 'Dates';
START = *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartColl;
TITLE = '5) ';

VALUE = 'Personal names':
START = *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartColl;
TITLE = '6) ':

VALUE = 'Newspapers';
START = *,*+1;
PUTDATA;

LABEL;
TSTART = 3,#StartCol2;
TITLE = '7) ';

VALUE = 'Boolean opegrators';
START = *,*+1;
PUTDATA:

LABEL;
TSTART = * +2, #StartCol2;
TITLE = '8) ';

VALUE = 'Compound search expression':
START = *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartCol2;
TITLE = '9) ';

VALUE = 'Natural language searching':
START u. *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartCol2;
TITLE = '10) ';

VALUE = 'Wild card searching';
START = *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartCol2;
TITLE = '11) ';

VALUE = 'Costs';
START = *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartCol2;
TITLE = '12) ';

VALUE = 'Technical details';
START *,*+1;
PUTDATA;

LABEL;
TSTART = *+2,#StartCol2;
TITLE = '13) ';

VALUE = 'Special services';

44
40

Appendix 6. HELP format

START = *,*+1;
PUTDATA;

LABEL = BROWSE.KW;
TSTART = 18,5;
TITLE = '90) List keywords beginning with: ';
VALUE = #BrKW;
LENGTH = 10;
START = *,39;
DISPLAY = UNPROTECT;
PUTDATA;

LABEL = INSTRUCTION;
TSTART = 1,3;
TITLE = 'Enter number of topic =>
VALUE = $STRING(#BelpNum);
LENGTH = 2;
S'7.4%.2 = *,29;

D LAY = UNPROTECT;
"JTDATA;

FRAME -ID = HELP.GET;
COMMENTS = Read choices entered by user on either HELP menu;
DIRECTION = INPUT;
FRAME-DIM = 19,79;
USAGE = Wn;
LABEL;

LENGTB
START , .1;

GETDATA;
TNPROC = $squ;
:ROC = if $TYPETEST($cval,INT) then set oval = '0';

= let HelpNum = $cval;
UPROC = if #WhichHelp = 'D' then jump ALL.DONE;

"ABEL = BROWSE.KW;
LENGTH = 10;
START = 18,39;
GETDATA;
INPROC = $squ;
UPROC = let brkw = $cval;

LABEL = ALL.DONE;
FRAME-ID = SHOWEELP;

COMMENTS = Display text of the help message;
DIRECTION = OUTPUT;
FRAME-DIM = 0,79;
LABEL = HELPTITLZ;

GETELEM;
LENGTH = 79;
START = 1,1;
UPROC = set adjust center;
DISPLAY = BRIGHT;
PUTDATA;

LABEL = HELPTEXT;
GETELEM;
MARGINS = 5,75;
START = *+2,5;
PUTDATA = 2;
LOOP;
XSTART = *+1,5;

FORMAT-NAME = HELP;
ALLOCATE = NEWSPAPR:PUBLIC;
ALLOCATE = NEWSPAFR:HELP;
FRAME-NAME = HELP.D.MENU;
FRAME-TYPE = XEQ;
UPROC = set padchar = $termpad;
UPROC N. set protect;
UPROC = set tdisplay = bright;
UPROC = set display = protect;

FRAME-NAME = HELP.E.MENU;
FRAME-TYPE = XEQ;
UPROC = set padchar = $termpad;
UPROC = set protect;
UPROC = set tdisplay = bright;
UPROC = set display m protect;

FRAME-NAME = HELP.GET;

WEST COPY hV'LLIELE 45

4i

SPIRES Full-Screen Interface

el

FRAME-TYPE = XEQ;
UPROC a. set padchar = $termpad;
UPROC = set protect;

FRAME-1414M = SHOWEELP;
FAME-TYPE = DATA;
UPROC = set protect;

46

42

APPENDIX 7. NEWSPAPER INDEX FILE
DEFINER

file NEWSPAPR:NEWSPAPERINDEX/ author Harry H. Kriz, University Libraries, 703-231-7052,

KRIZ AT VIV111/ bin purge/ statistics 2
com *

com
com * IMPORTANT: The generated file definition will be edited.

com
com * EDIT THE GENERATED FILE DEFINITION AS FOLLOWS BEFORE COMPILING:

com * See comments under TITLE and SUBJECT in REC01.

com * Record section:
com * REC01: Under ELEM = TITLE
cola * Delete word SUBJECT from INDEX =

corn * Under ELEM = SUBJECT

com * Delete word SUBJECT from INDEX =

com * RECO2: Delete REMOVED
com * Otherwise the subject heading key is unnecessarily

com * duplicated in the residual

com * ZIN04: Delete ALIASES = SUBJECT

com * Linkage section:
com * ZIN04: (TITLE index) Delete word SUBJECT from SEARCHTERHS

com * Subfile section:
com * Clean up duplicated comments

com
com *

com * PURPOSE: An index to articles in the Collegiate Times,

com * News Messenger, Roanoke Times, and Spectrum.

com * Data maintained by Reference Department.

com *

com * Initial data loading from data converted from

com * 20 ProCite databases.

com *

com BIN PURGE discards overnight processing messages unless a problem occurs.

com STATISTICS 2 writes logging information to a CMS file during overnight

com processing when subfiie logging is turned on in the subfile section.

com
com * Remember to add logging to public subfile section

com
com . Designed by H. M. Kriz, R. Stelk, D. Beagle, B. Obenhaus

com . Written: 8/6/91 By: H. M. Kriz

com END COMMENTS INCLUDED IN THE FILE DEFINER

goal RECOi/ result Article, Articles/ passer KEY

subfile NEWSPAPER INDEX
mod set format $prompt + da
cmd show select
card show subfile size

exp
exp NEWSPAPER INDEX is an index to articles abOut southwest

exp Virginia, Blacksburg, and Virginia Tech which have appeared

exp in the Christiansburg News Messenger, Collegiate Times,

exp Roanoke Times, and Virginia Tech Spectrum.

exp

FIXED
key ID/ slot
ele DATZ.ADDED, da/ date add/ single/ index/ mg

exp
exp SPIRES will supply today's date if you make no entry.

exp

REQUIRED
ele TITLE, t, keyword, kw/ text/ squeeze/ single/ index/ word/ exclude

43

BEST COVIT MAE

47

SPIRES Full-Screen Interface

exp
exp Enter the title of the article exactly as you want it to

exp appear. Only one title may be entered. Each word will

exp be indexed in the TITLE index, also known as the KEYWORD

exp index. Words from the subject headings are also included

exp in this index.
exp
com
com Delete the word SUBJECT from INDEX = in the generated

com filedef for this element. Also delete the word SUBJECT

com from the SEARCETERMS = for the TITLE index (ZIN04).

com
com

ele SOURCE, src/ squeeze/ capitalize/ single/ include CT, NM, RT, S/ index/ +

msg Valid entries are CT, NM, RT, S
OUTPROC $CHANGE.LIST('CT,"Collegiate Times",NM,''News Messenger", +

RT,"Roanoke Times",S,Spectrum')
exp
exp Enter the code for the newspaper. SPIRES will substitute the

exp full name when the data is output.
exp
exp CT = Collegiate Times NH = News Messenger

exp PT = Roanoke Times S = Virginia Tech Spectrum

exp
ele DATE, d/ date/ single/ index/ msg

exp
exp Enter the date the article was published
exp using any valid date format.
exp

ele PAGE, p/ text/squeeze/ capitalize/ single/ nag

exp
exp Enter the page where the article starts using any combination

exp of text and numbers.
exp

ele SUBJECT, subj, sh/ text/ squeeze/ capitalize,' lookup verify,2/ +

index title/ closeout $sort(ascend)/ +
msg Only valid subjects from the NEWSPAPER SUBJECTS subfile are accepted.

exp
exp Enter as many valid subject headings as desired for this article.

exp Only valid subject headings from the NEWSPAPER SUBJECTS subfile

exp are accepted. Each heading is entered in a separate occurrence

exp of this element. Each word in the heading will be indexed in

exp the TITLE index, also known as the KEYWORD index.

exp
com Valid subject headings are entered in the subfile

com NEWSPAPER SUBJECTS which, is RECO2 in this file.

com The record number is used instead of the record name in the

com lookup because this element is indexed, and the record name

cot will not work correctly for an indexed element in a

com forward lookup.

OPTIONAL
ele AUTHOR, a/ name/ single/ index

exp
exp Enter the name of the author of the article, if any.
exp Only one name may be entered.
exp

ele NOTES, n/ text/ squeeze/ single/ msg
exp
exp Enter any explanatory notes about the article.

exp

goal RECO2/ result Subject, Subjects

subfile NEWSPAPER SUBJECTS
cmd set format $prompt subjhead
cmd show select
cmd show subfile size

exp
exp NEWSPAPER SUBJECTS is a list of valid subject headings used

exp in the SUBJECT element in the subfile NEWSPAPER INDEX.

exp

48
Oct

Appendix 7. NEWSPAPER INDEX file definer

REQUIRED
key SUBJECT.SEADING, subjhead,subhd/ text/ squeeze/ cap

exp
exp Enter any phrase to be used as a subject heading in the

exp NEWSPAPER INDEX.
exp

OPTIONAL
ele DUMMY/ text/ squeeze/ single

exp
exp Place holder for possible future use.
exp

END

4 5
49

APPENDIX 8. NEWSPAPER INDEX FILE
DEFINITION

FILE = NEWSPAPR:NEWSPAPERINDEX;
COMMENTS *. Generated by FILE DEFINER 08/06/91;
COMMENTS = *;
COMMENTS =
COMMENTS = * IMPORTANT: The generated file definition will be edited.;

COMMENTS = *;
COMMENTS = * EDIT THE GENERATED FILE DEFINITION AS "OLLOWS BEFORE COMPILING:;

COMMENTS = * See comments under TITLE and SUBJECT in REC01.;

COMMENTS = * Record section:;
COMMENTS = * REC01: Under ELEM = TITLE;

COMMENTS = * Delete word SUBJECT from INDEX =;

COMMENTS = * Under ELEM = SUBJECT;

COMMENTS = * Delete word SUBJECT from INDEX =;

COMMENTS = * RECO2: Delete REMOVED;

COMMENTS = * Otherwise the subject heading key is unnecessarily;

COMMENTS = * duplicated in the residual;

COMMENTS = * ZIN04: Delete ALIASES = SUBJECT;

COMMENTS = * Linkage section:;
COMMENTS = * ZIN04: (TITLE index) Delete word SUBJECT from SEARCHTERMS;

COMMENTS = * Subfile section:;
COMMENTS = * Clean up duplicated comments;

COMMENTS =
COMMENTS = *;
COMMENTS = * PURPOSE: An index to articles in the Collegiate Times,:

COMMENTS = * News Messenger, Roanoke Times, and Spectrum.;

COMMENTS = * Data maintained by Reference Department.;

COMMENTS = *;
COMMENTS = * Initial data loading from data converted from;

COMMENTS = * 20 ProCite databases.;

COMMENTS = *;
COMMENTS = BIN PURGE discards overnight processing messages unless a problem occurs.;

COMMENTS = STATISTICS 2 writes logging information to a CMS file during overnight;

COMMENTS = processing when subfile logging is turned on in the subfile section.;

COMMENTS =
COMMENTS = * Remember to add logging to public subfile section;

COMMENTS =
COMMENTS = . Designed by H. M. Kriz, R. Stelk, D. Beagle, B. Obenhaus;

COMMENTS = . Written: 8/6/91 By: H. M. Kriz;

COMMENTS = ******* END COMMENTS INCLUDED IN THE FILE DEFINER

COMMENTS = Record changes, other than changes to the SUBF/LE section -;

COMMENTS = Modified: 9/17/91 by H. Kriz. Added $CHANGE.LST INPROC -;

COMMENTS = to SOURCE to allow TRA/UPD transaction. -;

COMMENTS = Modified: 10/23/91 by H. Kriz. Added $SEARCH.TRUNC -;

COMMENTS = searchproc to allow wild card search on keywords. -;

COMMENTS = Modified SWORD searchproc to allow use of * as truncation -;

COMMENTS = character. Otherwise it would be converted to a blank. -;

COMMENTS = -;
COMMENTS = Modified: 11/23/91 by H. Kriz. Treat hyphen as space -;

COMMENTS = Add BREAK. HYPHEN to SEARCHPROC and PASSPROC for ZINO4 -;

COMMENTS mg Copied from FILEDEF on VH1, 3/16/92, by H. Kriz -;

COMMENTS =
AUTHOR = Harry M. Kriz,University Libraries,703-231-7052,KRIZ AT VTV111;

DEFDATE = TUES. AUG. 6, 1991;
MODDATE = THUR. SEPT. 24, 1992;
MODTIME = 16:26:38;
BIN = PURGE;
STATISTICS = 2;
RECORD-NAME = RECO1;

REMOVED;
SLOT;

SLOT-NAME = ID;
ELEMINFO;
VALUE-TYPE = NUMERIC;

46'

BEST CZPY AVAILABLE

51

0

SPIRES Full-Screen Interface

FIXED;
ELEM = DATE.ADDED;
OCCURS = 1;
LENGTH = 4;
INPROC = $MSG(Invalid date value)/ $DATE/ $GEN.DATE(ADD);
OUTPROC = $DATE.OUT;
ALIASES = DA;
ELEMINFO;

DESCRIPTION;
DESCRIPTION = " SPIRES will supply today's date if you make no entry.";

DESCRIPTION;
SUPPLIED = Today's Date;
VALUE-TYPE = DATE;
INDEX = DATE.ADDED;
INDEX = DA;

REQUIRED;
ELEM = TITLE;

OCCURS ex 1;
INPROC = $SQU;
ALIASES = T, KEYWORD, KW;
COMMENTS =
COMMENTS = Delete the word SUBJECT from INDEX = in the generated;

COMMENTS = filedef for this element. Also delete the word SUBJECT;
COMMENTS = from the SEAR:STERNS = for the TITLE index (ZIN04).;
COMMENTS =
COMMENTS;
ELEMINFO;
DESCRIPTION;
DESCRIPTION = " Enter the title of the article exactly as you want it to";

DESCRIPTION = " appear. Only one title may be entered. Each word will";
DESCRIPTION = " be indexed in the TITLE index, also known as the KEYWORD";

DESCRIPTION = " index. Words from the subject headings are also included";

DESCRIPTION = " in this index.";
DESCRIPTION;
VALUE-TYPE = TEXT;
INDEX = TITLE;
INDEX = T;
INDEX = KEYWORD;
INDEX = KW;

ELEM = SOURCE;
OCCURS = 1;
INPROC = $CHANGE.LIST("'Collegiate Times",CT,"News Messenger",NM,"Roanoke

Times",RT,Spectrum,S')/
$MSG('Valid entries are CT,NM,RT,S')/ 4SQU/ $CAP/ $INCLUDE('CT, NM, RI', S');

OUTPROC = $CHANGE.LIST('CT,"Collegiate Times",N11,"News Messenger",

RT,"Roanoke
Times",S,Spectrum9;

ALIASES = SRC;
ELEMINFO;

DESCRIPTION;
DESCRIPTION = " Enter the code for the newspaper. SPIRES will substitute the";

DESCRIPTION = " full name when the data is output.";
DESCRIPTION;
DESCRIPTION = " CT = Collegiate Times NM = News Messenger";

DESCRIPTIOA = " RT = Roanoke Times S = Virginia Tech Spectrum";

DESCRIPTION;
INDEX = SOURCE;
INDEX = SRC;

ELEM IS DATE;
OCCURS = 1;
LENGTH = 4;
INPROC = $MSG(Invalid date value)/ $DATE;
OLITPROC = $DATE.OUT;
ALIASES = D;
ILEMINFO;
DESCRIPTION;
DESCRIPTION = " Enter the date the article was published ";
DESCRIPTION = " using any valid date format.";
DESCRIPTION;
VALUE-TYPE = DATE;
INDEX = DATE;
INDEX = D;

52

.1

Appendix 8. NEWSPAPER INDEX file definition

ELEM = PAGE;
OCCURS = 1;
INPROC = $SQU/ $CAP;
ALIASES = P;
ELEMINFO;

DESCRIPTION;
DESCRIPTION = " Enter the page where the article starts using any combination ";

DESCRIPTION = " of text and numbers. ";
DESCRIPTION;
VALUE -TYPE = TEXT;

ELEM A. SUBJECT;
INPROC = $MSG('Only valid subjects from the NEWSPAPER SUBJECTS sUbfile are

accepted.')/ $SQU/ $CAP/
$LOOKUP(verify,2)/ $sort(ascend);

ALIASES = SUBJ, SE;
COMMENTS = Valid subject headings are entered in the subfile;

COMMENTS = NEWSPAPER SUBJECTS which, is RECO2 in this file.;

COMMENTS = The record number is used instead of the record name in the;

COMMENTS = lookup because this element is indexed, and the record name;

COMMENTS = will not work correctly for an indexed element in a;

COMMENTS = forward lookup.;
ELEMINFO;
DESCRIPTION;
DESCRIPTION = " Enter as many valid subject headings as desired for this

article.";
DESCRIPTION = " Only valid subject headings from the NEWSPAPER SUBJECTS subfile";

DESCRIPTION = " are accepted. Each heading is entered in a separate occurrence";

DESCRIPTION = " of this element. Each word in the heading will be indexed in";

DESCRIPTION = " the TITLE index, also known as the KEYWORD index.";

DESCRIPTION;
VALUE-TYPE = TEXT;
INDEX = TITLE;
INDEX = T;
INDEX = KEYWORD;
INDEX = KW;

OPTIONAL;
=MX = AUTHOR;

OCCURS = 1;
INPROC = $NAME;
OUTPROC = SNAKE;
ALIASES = A;
ELEMINFO;
DESCRIPTION;
DESCRIPTION = " Enter the name of the author of the article, if any.";

DESCRIPTION = " Only one name may be entered.";
DESCRIPTION;
VALUE-TYPE = TEXT;
INDEX = AUTHOR;
INDEX = A;

ELEM = NOTES;
OCCURS = 1;
INPROC = $SQU;
ALIASES = N;
ELEMINFO;
DESCRIPTION;
DESCRIPTION = " Ent:: any explanatory notes about the article.";

DESCRIPTION;
VALUE-TYPE = TEXT;

RECORD -NAME = RECO2;
REQUIRED;

KEY = SUBJECT.HEADING;
OCCURS = 1;
INPROC = $SQU/ $CAP;
ALIASES = SUBJHEAD, SUBHD;
ELEMINFO;

DESCRIPTION;
DESCRIPTION = " Enter any phrase to be used as a subject heading in the";

DESCRIPTION = " NEWSPAPER INDEX.";
DESCRIPTION;
VALUE-TYPE = TEXT;

OPTIONAL;
ELEM = DUMMY;

43

BEST COPY AVEI171

53

SPIRES Full-Screen Interface

OCCURS = 1;
INPROC = $SQU;
ELEMINFO;

DESCRIPTION;
DESCRIPTION = " Place holder for possible future use.";
DESCRIPTION;
VALUE-TYPE = TEXT;

RECORD-NAME = ZIN03;
REQUIRED;

KEY = DATE.ADDED;
INPROC = $DATE;
OUTPROC = $DATE.OUT;

OPTIONAL;
ELEM = POINTER;

LENGTH = 4;
INPROC = $INT;
OUTPROC = $INT.OUT;

RECORD-NAME = ZIN04;
COMBINE = ZIN03;
REQUIRED;

KEY = TITLE;
OPTIONAL;

ELM(= POINTER;
LENGTH = 4;
INPROC = $INT;
OUTPROC = $INT OUT;

RECORD-NAME = ZIN05;
COMBINE = ZIN03;
REQUIRED;

KEY = SOURCE;
OPTIONAL;
ELM = POINTER;

LENGTH = 4;
INPROC = SINT;
OUTPROC = $INT.OUT;

RECORD-NAME = ZIN06;
COMBINE = ZIN03;
REQUIRED;

KEY = DATE;
INPROC = $DATE;
OUTPROC = $DATE.OUT;

OPTIONAL;
ELEM = POINTER;

LENGTH = 4;
INPROC = $INT;
OUTPROC = $INT.OUT;

RECORD-NAME = ZIN07;
COMBINE = ZIN03;
REQUIRED;
KEY = AUTHOR;

OPTIONAL;
&LEH = FIRST;

TYPE = STRUCTURE;
STRUCTURE = FIRST;
REQUIRED;

KEY = FN;
INPROC = Salida;
OUTPROC = SYNAME;

OPTIONAL;
ELEM = POINTER;

LENGTH = 4;
INPROC = $INT;
OUTPROC = $INT.OUT;

GOALREC-NAME = REC01;
PIR-ELEM = POINTER;

EXTERNAL-NAME = ARTICLE, ARTICLES;
GOALREC-KlY = ID;
PASSPROC = $PASS(NUMER/C);

INDEX -NAME = 2IN03;
SZARCHTIRMS = DATE-ADDED, DA;

SZARCHPROO = $MSG(Invalid date value)/ $DATE(TRUNC);
PASSPROC = $PASS.ZLO('DATE.ADDED',NtlaRIC);

54

I

Appendix 8. NEWSPAPER INDEX file definition

INDEXINFO;
SOURCE = DATE.ADDED;
VALUE-TYPE = DATE;

PTR-GROUP = POINTER;
INDEX-NAME = ZIN04;

SEARCHTERMS = TITLE, T, KEYWORD, KW;
SEARCHPROC = "$WORDC.-!@#$%g()_+=1\()[]:;""<>,.?/',BREAK.HYPHEN)/

$EXCLUDE(COMMON.WORDS)/
$SEARCH.TRUNC(*4,S)";

PASSPROC = $PASS.ELEM('TITLE, SUBJECT',2)/ $WORD(PASS,BREAK.HYPHEN)/
$EXCLUDE(COMMON.WORDS);

INDEXINFO;
SOURCE = TITLE;
SOURCE = SUBJECT;
VALUE-TYPE = WORD;
TRUNCATE = *;

PTR-GROUP = POINTER;
INDEX-NAME = ZIN05;
SEARCHTERMS = SOURCE, SRC;

SEARCHVPOC = $MSG('Valid entries are CT,NM,RT,8')/ $INCLUDE('CT, NM, RT, S');
PASSPROC = $PASS.ELEMCSOURCE',1);
INDEXINFO;

SOURCE = SOURCE;
PTR-GROUP = POINTER;

INDEX-NAME = ZIN06;
SEARCHTERMS = DATE, D;

SEARCHPROC = $MSG(Invalid date value)/ $DATE(TRUNC);
PASSPROC = $PASS.ELEM('DATE',NUNERIC);
INDEXINFO;

SOURCE = DATE;
VALUE-TYPE = DATE;

PTR -GROUP = POINTER;
INDEX-NAME = ZIN07;
SEARCHTERMS = AUTHOR, A;

SEARCHPROC = $PNAME(TRANS);
PASSPROC = $PASS.ELEM('AUTHOR',NAME)/ $PNAME(TRANS,sPECIAL);
INDEXINFO;

SOURCE = AUTHOR;
VALUE-TYPE = NAME;

SUB -INDEX = FIRST;
SEARCHTERMS = NONE;

PRIV-TAG = 1;
PASSPROC = $PASS.00C;

P7R-GROUP = POINTER;
SUBFILE-NAME = NEWSPAPER INDEX;
EXP;
EXP = " NEWSPAPER INDEX is an index to articles about southwest";
EXP = " Virginia, Blacksburg, and Virginia Tech which have appeared";
EXP = " in the ChristianSburg News Messenger, Collegiate Times,";
EXP = " Roanoke Times,
EXP;
GOAL-RECORD = REC01;
ACCOUNTS = NEWSPAPR;

NOSEARCH = 1;
SELECT-COMMAND
SELECT-COMMAND
SELECT-COMMAND
SELECT-COMMAND

and Virginia Tech Spectrum.";

= set format Sprompt + da;
= show select;
= show subfile size;
= set xeq NEWSPAPER PROTOCOLS;

GOAL-RECOPD = REC01;
ACCOUNTS = PUBLIC;

SECURE-SWITCHES = 3;
NOSZARCH = 1;
SELECT-COMMAND = set xeq NEWSPAPER PROTOCOLS;
SELECT-COMMAND = ..PUBLIC;

SUBPILZ-NAME = NEWSPAPER SUBJECTS;
EXP;
EXP = " NEWSPAPER SUBJECTS is a list of valid subject headings used";

EXP = " in the SUBJECT element in the subfile NEWSPAPER INDEX.";
EXP;
GOAL-RECORD RECO2;

ACCOUNTS - NEWSPAPR;
SELECT-COMMAND set format $prompt subjhead;

" BEST COP IT AVAILABLE

55

SPIRES Full-Screen Interface

SELECT-COMMAND = show select;
SELECT-COMMAND = show subfile size;

56

APPENDIX 9. HELP FILE DEFINER

file NEWSPAMNPHELP/author Harry M. Xriz, +
University Libraries, 703-231-7052, XRIZ AT VTVM1/ bin purge

goal REC01/ result Help

subfile NEWSPAPER HELP
amd set format Sprompt
amd show select
amd show subfile SiZQ

exp
exp NEWSPAPER HELP contains the text displayed on help screens

exp in the NEWSPAPER INDEX subfile.
exp

subfile NEWSPAPER HELP/ accounts PUBLIC/ switches 3
exp
exp NEWSPAPER HELP contains the text displayed on help screens
exp in the NEWSPAPER INDEX subfile.
exp

REQUIRED
key HELPTOPIC/ text/ cap/ single

exp
exp Enter the name of the topic as it will be called by the
exp NEWSPAPERPUPLIC protocol.
exp

element HELPTITLE/ text/ single
exp
exp Enter the title to display on the help screen
exp

element HELPTEXT
exp
exp Enter the text of the help screen
exp

OPTIONAL
END

57

APPENDIX 10. HELP FILE DEFINITION

FILE = NEWSPAPR:NPRELP;
COMMENTS = Generated by FILE DEFINER 07/22/91;

AUTHOR = Harry M. Kriz,University Ltbraries,703-231-7052,ERIZ
AT VTVM1;

DEFDATE = MON. JULY 22, 1991;
MODDATE = WED. AUG. 28, 1991;
MODTIME = 15:28:04;
BIN = PURGE;
RECORD-NAME = RECO1;

REMOVED;
REQUIRED;

KEY = BELPTOPIC;
OCCURS = 1;
ramoc = *CAP;
ELEM/NFO;
DESCRIPTION;
DESCRIPTION = " Enter the name of the topic as it will be called by the";

DESCRIPTION = " NEWSPAPERPUBL/C protocol.";

DESCRIPTION;
VALUE-TYPE = TEXT;

ELEM = RELPTITLE;
OCCURS = 1;
ELEMINFO;

DESCRIPTION;
DESCRIPTION = " Enter the title to display on the help screen";

DESCRIPTION;
VALUE-TYPE = TEXT;

ELEM = BELPTEXT;
ELEMINFO;
DESCRIPTION;
DESCRIPTION = " Enter the text of the help screen";

DESCRIPTION;
SUBFILE-NAME = NEWSPAPER HELP;

EXP;
EXP = " NEWSPAPER HELP contains the text displayed on help screens";

EXP = " in the NEWSPAPER INDEX snbfile.";

EXP;
EXP;
EXP = " NEWSPAPER HELP contains the text displayed on help screens";

EXP = " in the NEWSPAPER INDEX sUbfile.";

EXP;
GOAL-RECORD = REC01;
ACCOUNTS = NEWSPAPR;

GOAL-RECORD = REC01;
ACCOUNTS - PUBLIC;

SECURE - SWITCHES = 3;

59

53

APPENDIX 11. PRINT PROTOCOL

This protocol is executed when the user presses the function key to print a set of
articles found in a search. The protocol is almost independent of the database in use.
Database specific items include the name of the VGROUP used by the print format
and the text of the messages to the user. The print protocol could be made more
generic so it could apply to any database. For example, the VGROUP name could be
included in a variable in the vgroup NEWSPAPR:PUBLIC. The text of the messages
could be generalized.

Code for the PRINT format and vgroup are not included here because any custom
format written from scratch or generated by the GENERATE FORMAT command in
$REPORT could be used with this protocol. Variables used in this protocol which are
defined in the PRINT format include Save Index and Format Save. Their purpose is
obvious from the context of the code.

* PRINT (Add 09/26/91, upd 09/24/92 at 22:21 by NEWSPAPR)
!set noecho

- SEE DOCUMENTATION AT END OF FILE

allocate NEWSPAPR:PRINT ; variables needed before format is set

if #ResultKeyCount = 0 then beginblock

There are no articles to print
*

ask prompt = '(Press <RETURN> to continue)' NULL =
endblock

else beginblock
*

/* There are #ResultKeyCount titles to be printed
* for the search
*

/* #SrchArgOK
*

Printout will be generated on the 3800 printer
in the Computing Center.

*

REPEAT
ask upper prompt 'Do you wish to print the list of articles (Y/N)?'
let response = $pmatCh($askMES,N?0)
if #response = 0 then beginblock

*

* Y or N please

endblock
UNTIL #response -= 0
let answer = 41eftstr($ask,1)

if #answer = 'N' then beginbiock ; User cancels printout

/* Print canceled by user
*

ask prompt = '(Press <RETURN> to continue)' NULL =
endblock

else beginbiock Otherwise, do the print
If no stack due to a subsequent failed
search and printing previously displayed

attn='-'

attn='-'

61

9 9

SPIRES Full-Screen Interface

result, then rebuild stack from Resultkey
array

if -$stack then beginblock
let Savelndex = #Index
let Index = 0
WHILE #Index < #ResultKeyCount

let Index = #Index + 1
/stack #ResultKey::index

ENDWHILE
let Index = #Savelndex
endblock

let FormatSave = $SETFORMAT
set format PRINT

/let PrintTitle = '#SrchArgOK'
SET ACTIVE TEMPPRNT FILE
setp 3800p6 pre
set active printer (cc
in active type
setp restore
SET ACTIVE ACTIVE FILE
/set format #FormatSave

For debugging

/* #ResultKeyCount titles were printed for the search

/* #SrchArgOK

ask prompt = '(Press <RETURN> to tontine)' NULL = attn='-'

endblock
endblock

deallocate NEWSPAPR:PRINT ; variables not needed for search and display

RETURN

- PRINT protocol produces a printout from the NEWSPAPER INDEX
- Written by H. M. Kriz, University Libraries, 231-7052, KRIZ e Irma
- Called by print routine in PUBLIC protocol

- Calls:
FORMATS: NEWSPAPR:PRINT
VORCUPS: NEWSPAPR:PRINT

- Variables specific to this protocol are compiled in PRINT

- PUBLIC variables are also used.
- Modified 4/21-24/92 by H. Kriz when adapting for more generic names

62

APPENDIX 12. ERRORS PROTOCOL

* ERRORS (Add 09/15/92, Upd 09/21/92 at 11:33 by NEWSPAFR)
!set noecho

- SEE DOCUMENTATION AND USAGE NOTES AT END OF FILE

if #ErrMsgNum = 212 then beginblock
*

* Your keyword syntax is interpreted as

/* #SrchArg
*

* which is a form NOT understood by the system.
* Please edit your keywords and try again.
endblock

else if #ErrMsgNum = 14 and #ErrSamm = 274 then beginblock

* We're sorry, but your search request failed due to
* insufficient virtual storage. This can result if

* you specified a -nry large range of dates, or
* otherwise issued a request which involved a
* Boolean AND operation involving tens of thousands
* of records.
*

* Please edit your search request to produce a smaller
* search result, perhaps by specifying a more restrictive
* range of dates, and try again.

* If this is not feasible, please call the Reference
* Desk in Newman Library at 231-6045 and ask that
* a consultant contact you.
endblock

else if #ErrENum = 14 then beginblock

* Your search cannot be executed because a
* truncated keyword has a stem shorter than
* the required 5 characters. Please edit your

* keywords and try again.
endblock

else beginblock

* We're sorry, but an unanticipated SPIRES error
* occurred during your search. You should be able to
* continue searching by editing your request and trying

* again.
*

* If you would like more information and assistance with
* the search that caused the error, please call the
* Reference Department in Newman Library at 231-6045
* and report that you encountered SPIRES error code:
*

/* Message Number: #ErrMsgNum
/* Error Number: CirrSNUm
*

* while searching the 5SZLECT database.
endblock

* When you press the CLEAR key, you will be returned
* to the search screen and you will see the message
*

'No articles found...'

* You may continue searching after modifying your request.

RETURN
DOCUMENTATION AND USAGE NOTES BEGIN

63

SPIRES Full-Screen Interface

- ERRORS protocol displays error messages for NEWSPAPER INDEX

- Written by : H. M. Kriz, University Libraries, 231-7052, KRIEeVTV111
- Called by: PUBLIC PROTOCOL for NEWSPAPER INDEX

Application tests an error condition. If it exists, the
SPIRES system variables $snum, $enum, Usgnum are copied
to global variables in the application and this protocol
is executed to display an appropriate message.
Values for the message numbers are listed in the SPIRES
system subfile SYSTEM MESSAGES

- Variables: ErrENum, ErrMsgNum, ErrENum set by calling protocol are
compiled in PUBLIC vgroup used by NEWSPAPER INDEX.
SrchArg - the search argument

- MODIFIED: 9/21/92 by B. Kriz to use more generic names
- ========= DOCUHENTATION AND USAGE NOTES END

64
5,

